Takamura-Enya et al.
monitored by TLC, and upon completion, the reaction mixtures
were dissolved in a CHCl3-MeOH solution, directly subjected to
column chromatography on silica gel, and eluted with a step
gradient of MeOH in CHCl3. The fractions containing the desired
products were combined, evaporated, and finally dried under high
vacuum to remove traces of the solvent.
N2-Naphthalen-1-yl-2′-deoxyguanosine (12a): 1H NMR (DMSO-
d6) δ 10.9 (s, 1H), 8.89 (s, 1H), 8.13-8.08 (m, 2H), 8.03 (s, 1H),
7.96 (dd, J ) 7.8 Hz, 1.0, 1H), 7.73 (d, J ) 8.1 Hz, 1H), 7.62-
7.51 (m, 3H), 6.10 (t, J ) 6.8 Hz, 1H), 5.24 (d, J ) 4.1 Hz, 1H),
4.84 (t, J ) 5.5 Hz, 1H), 4.23 (td, J ) 6.2 Hz, 3.2 Hz, 1H), 3.76
(dd, J ) 7.8 Hz, 4.6 Hz, 1H), 3.40 (tt, J ) 16.3 Hz, 5.7 Hz, 1H),
2.59-2.51 (m, 1H), 2.18 (dq, J ) 13.2 Hz, 3.2 Hz, 1H); 13C NMR
(DMSO-d6) 156.4, 150.1, 149.4, 136.5, 133.6, 133.2, 128.3, 126.5,
126.0, 125.7, 124.1, 121.3, 118.9, 118.3, 87.6, 82.8, 70.5, 61.6;
FAB-HRMS (nba) m/z [M + H+] calcd for C20H20N5O4 394.1515,
found 394.1492.
probably due to the formation of hydroxyamine derivatives from
insufficient nitro reduction, whereas overnight treatment with
Zn in Na citrate buffer resulted in the complete reduction of
the nitro group in oligonucleotide 20c. Liquid chromatography
electrospray ionization tandem mass spectrometry (LC-ESI-
MS) indicated that the nitrophenyl oligonucleotide 20c was
converted to aminophenyl oligonucleotide 21c whose enzymatic
hydrolysates also showed the presence of N2-aminophenyl-
dG 3c. The synthesis of site-specific modified oligonucleotides
with the dG-N2 adduct was recently reported by Johnson’s
group; they used the phosphoramidite derivatives of acetylami-
nophenyl-dG or trifluoroacetylaminophenyl-dG followed by the
alkali deprotection of the trifluoroacetyl moiety.14 The system
using nitro groups as the protective group of the dG-N2 adduct
is now an efficient alternative tool for the synthesis of site-
specific modified oligonucleotides.
N2-2-Nitrobenzen-1-yl-2′-deoxyguanosine (12c): 1H NMR (DM-
SO-d6) δ 11.8 (s, 1H), 9.60 (s, 1H), 8.26 (d, J ) 8.5 Hz, 1H),
8.11-8.07 (m, 2H), 7.74 (t, J ) 5.9 Hz, 1H), 7.29 (t, J ) 6.7 Hz,
1H), 6.09 (t, J ) 6.7 Hz, 1H), 5.25 (d, J ) 3.7 Hz, 1H), 4.86 (t,
J ) 5.2 Hz, 1H), 4.30 (br s, 1H), 3.78 (q, J ) 3.9 Hz, 1H), 3.46
(tt, J ) 16.2 Hz, 5.2 Hz, 1H), 2.57-2.51(m, 1H), 2.26-2.18 (m,
1H); 13C NMR (DMSO-d6) 156.4, 148.4, 148.3, 139.0, 136.9, 134.6,
133.2, 125.3, 123.9, 123.4, 119.2, 87.6, 83.0, 70.5, 61.5; FAB-
HRMS (nba) (m/z) [M + H+] calcd for C16H17N6O6 389.1210, found
389.1225.
N2-4-Nitrobiphenyl-3-yl-2′-deoxyguanosine (12d): 1H NMR
(DMSO-d6) δ 12.06 (br s, 1H), 9.88 (br s, 1H), 8.85 (s, 1H), 8.22
(dd, J ) 8.8 Hz, 1.0, 1H), 8.17 (d, J ) 1.0 Hz, 1H), 7.78 (d, J )
7.8 Hz, 2H), 7.60-7.53 (m, 3H), 7.46 (t, J ) 7.0 Hz, 1H), 6.24 (t,
J ) 6.7 Hz, 1H), 5.30 (d, J ) 3.2 Hz, 1H), 4.91 (t, J ) 4.9 Hz,
1H), 4.28 (s, 1H), 3.85 (s, 1H), 3.30 (s, 2H), 2.63-2.55 (m, 1H),
2.28-2.20 (m, 1H), -0.87 (m, 18H), 0.15-0.02 (s, 9H); 13C NMR
(DMSO-d6) 156.5, 148.5, 148.7 146.1, 137.6, 136.7, 136.6, 134.3,
129.3, 129.0, 127.0, 126.4, 121.1, 120.9, 119.3, 87.9, 82.7, 70.7,
61.6; FAB-HRMS (nba) m/z [M + H +] calcd for C22H21N6O6Si2-
Na 465.1522, found 465.1488.
N2-2-Nitronaphthalen-1-yl-2′-deoxyguanosine (12e): 1H NMR
(DMSO-d6) δ 8.30 (d, J ) 8.3 Hz, 1H), 8.11 (dd, J ) 7.9 Hz, 1.1
Hz, 1H), 8.02 (s, 2H), 7.95 (s, 1H), 7.78-7.69 (m, 2H), 5.79 (t,
J ) 6.8 Hz, 1H), 5.10 (d, J ) 3.2 Hz, 1H), 4.71 (br s, 1H), 4.00
(br s, 1H), 3.18 (br s, 2H), 2.31-2.22 (m, 1H), 1.98 (dq, J ) 13.1
Hz, 3.3 Hz, 1H), -0.87 (m, 18H), 0.15-0.02 (s, 9H); 13C NMR
(DMSO-d6) 150.6, 149.3, 141.6, 136.3, 135.1, 129.3, 128.7, 128.3,
127.9, 126.6, 124.8, 120.7, 118.2, 87.6, 82.8, 70.5, 61.6; FAB-
HRMS (nba) m/z [M + H+] calcd for C20H19N6O6 439.1366, found
439.1329.
Conclusion
Here, we described the efficient preparation of dG-N2
adducts from carcinogenic aromatic amino/nitro compounds via
the direct N-arylation reaction. This methodology will be applied
for a wide variety of dG-N2 adducts and also to dA-N6 DNA
adducts; in particular, it will be used for the preparation of site-
specific adducted oligonucleotides with dG-N2 adducts during
solid-phase oligonucleotide synthesis.
Experimental Section
Typical Procedure for the Coupling of Silyl-Protected 2′-
Deoxyguanosine 10 with Iodoarene 9. Compound 10 (1 mmol),
Pd2(dba)3 (0.1 mmol), phosphine ligand (0.3 mmol), iodoarene 9
(2 mmol), and Cs2CO3 (2 mmol) were dissolved in 3 mL of dioxane
and stirred at 100 °C for 10 h. The reaction mixtures were then
evaporated, and the residues were dissolved in CHCl3, subjected
to column chromatography on silica gel, and eluted using a step
gradient of MeOH in CHCl3. The fractions containing the desired
products were combined, evaporated, and finally dried under high
vacuum to remove traces of the solvent.
3′,5′-Di-tert-butyldimethylsilyl-N2-naphthalen-1-yl-2′-deoxy-
guanosine (11a): 1H NMR (DMSO-d6) δ 10.89 (s, 1H), 8.84 (s,
1H), 8.03 (d, J ) 6.6 Hz, 2H), 7.92-7.87 (m, 2H), 7.67 (d, J )
8.1 Hz, 1H), 7.56-7.47 (m, 2H), 7.41 (t, J ) 7.9 Hz, 1H), 6.06 (t,
J ) 6.7 Hz, 1H) (s, 1H), 4.28 (br s, 1H), 3.71 (br s, 1H), 3.47 (d,
J ) 5.4 Hz, 1H), 3.11 (d, J ) 5.1 Hz, 1H), 2.65-2.55 (m, 1H),
2.16-2.07 (s, 1H), 0.81 (m, 9H), 0.77 (m, 9H) 0.05 (s, 6H), -0.09
(m, 6H); 13C NMR (CDCl3) 156.3, 150.1, 149.3, 136.3, 133.6,
133.2, 128.3, 126.6, 125.9, 125.3, 124.1, 121.4, 118.8, 118.3, 87.1,
82.5, 72.2, 62.7, 25.7, 25.6, 17.9, 17.6, -4.7, -4.9, -5.4; FAB-
HRMS (nitrobenzyl alcohol/nba) m/z [M + Na+] calcd for
C61H74N9O6Si2Na 644.3064, found 644.3123.
N2-(8-Acetylamidopyren-1-yl)-2′-deoxyguanosine (12g): 1H
NMR (DMSO-d6) δ 10.35 (s, 1H), 8.59 (d, J ) 8.5 Hz, 1H), 8.40-
8.10 (m, 8H), 6.09 (t, J ) 7.0 Hz, 1H), 5.19 (br s, 1H), 4.82 (br s,
1H), 4.21 (m, 1H), 3.76 (m, 1H), 3.16 (tm, 2H), 2.60 (m, 1H),
2.49 (s, 3H), 2.18 (m, 1H); 13C NMR (DMSO-d6) 168.9, 156.6,
153.5, 150.7, 126.2, 135.1, 131.5, 128.2, 127.5, 126.3, 125.9, 125.1,
124.8, 124.5, 123.4, 123.2, 122.6, 122.1, 118.4, 116.5, 87.5, 82.7,
82.4, 70.6, 61.6, 14.1; FAB-HRMS (nba) m/z [M + Na+] calcd
for C28H24N6O5Na 547.1706, found 547.1590.
3′,5′-Di-tert-butyldimethylsilyl-N2-biphenyl-3-yl-2′-deoxygua-
nosine (11b): 1H NMR (CDCl3) δ 12.24 (br s, 1H), 9.96 (br s,
1H), 8.31 (br s, 1H), 8.15-7.97 (m, 1H), 7.87-7.72 (m, 3H), 7.42-
7.25 (m, 6H), 6.30-6.21 (m, 1H), 4.55-4.45 (m, 1H), 4.02-3.95
(m, 1H), 3.80-3.65 (m, 2H), 2.55-2.25 (m, 2H), 0.99-0.87 (m,
18H), 0.15-0.02 (s, 9H); 13C NMR (CDCl3) 158.7, 150.3, 149.5,
141.0, 140.8, 139.5, 139.1, 136.0, 128.6, 128.3, 128.2, 127.1, 126.9,
122.4, 120.9, 120.2, 118.9, 118.7, 118.4, 118.2, 87.6, 84.0, 72.0,
62.8, 40.7, 31.5, 25.9, 25.7, 22.6, 18.3, 17.9, 14.1, -4.59, -4.62,
-4.73, -4.75, -5.37, -5.47; FAB-HRMS (nba) m/z [M + Na+]
calcd for C34H49N5O4Si2Na 670.3220, found 670.3261.
Typical Procedure for the Direct N-Arylation of Nucleosides
with Iodoarene 9. Nucleoside (1 mmol), Pd2(dba)3 (0.1 mmol),
xantphos (0.3 mmol), iodoarene 9 (2 mmol), and TEAF (2 mmol)
were dissolved in 3 mL of DMSO and stirred at the temperature
indicated in the Results and Discussion. The reactions were
N6
-2-Nitrobenzen-1-yl-2′-deoxyadenosine (15c): 1H NMR
(DMSO-d6) δ 10.6 (s, 1H), 8.60 (s, 1H), 8.43 (d, J ) 8.3 Hz, 1H),
8.39 (d, J ) 0.5 Hz, 1H), 8.11 (d, J ) 8.3 Hz, 1H), 7.77 (t, J ) 7.4
Hz, 1H), 7.31 (t, J ) 7.7 Hz, 1H), 6.42 (t, J ) 6.8 Hz, 1H), 5.34
(d, J ) 4.1 Hz, 1H), 5.06 (t, J ) 5.6 Hz, 1H), 4.46-4.40 (m, 1H),
3.89 (dd, J ) 7.2 Hz, 4.3 Hz, 1H), 3.66-3.60 (m, 1H), 3.56-3.49
(m, 1H), 2.81-2.72 (m, 1H), 2.33 (dq, J ) 13.2 Hz, 3.2 Hz, 1H);
13C NMR (DMSO-d6) 151.4, 150.8, 149.4, 141.6, 139.7, 134.6,
133.6, 125.3, 124.3, 123.5, 120.8, 87.9, 83.9, 70.7, 61.6; FAB-
HRMS (nba) m/z [M + H+] calcd for C16H17N6O5 373.1260, found
373.1237.
5604 J. Org. Chem., Vol. 71, No. 15, 2006