S. Tisserand et al. / Tetrahedron Letters 47 (2006) 5177–5180
5179
column chromatography (n-hexane/Et2O = 95:5) afforded
4 and 5. Analytical data for anti-(E)-4a: 1H NMR
(300 MHz, CDCl3) d 7.26 (d, 2H, 3J = 8.1 Hz), 7.20 (d,
We thank Dr. B. Rousseau and the CEA for hydrogena-
tion of 5-decyne with D2, C. Antheaume and Dr. A. De
Cian for NMR and X-ray spectroscopy.
3
4
2H, J = 8.1 Hz), 6.10 (d, 1H, J = 1.5 Hz), 4.75 (d, 1H,
3J = 10.3 Hz), 2.80 (dt, 1H, 3J = 4.0 Hz, 2J = 14.1 Hz),
2.44 (dt, 1H, 3J = 4.0 Hz), 2.38 (s, 3H), 2.17 (ddt, 1H,
3J = 4.8 Hz, 4J = 1.5 Hz), 1.86 (dquin, 1H, 3J1 =
3J2 = 4,0 Hz, 2J = 12.8 Hz), 1.64–1.56 (m, 1H), 1.49
(dquin, 1H, 3J1 = 3J2 = 4.0 Hz, 2J = 13.4 Hz), 1.41 (dquin,
References and notes
1. (a) Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am.
Chem. Soc. 1977, 99, 3179–3181; (b) Hiyama, T.; Okude,
Y.; Kimura, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1982,
55, 561–568; (c) Cintas, P. Synthesis 1992, 248–257; (d)
Wessjohann, L. A.; Scheid, G. Synthesis 1999, 1–36; (e)
Baati, R.; Gouverneur, V.; Mioskowski, C. J. Org. Chem.
2000, 65, 1235–1238; (f) Semmelhack, M. F. In Organo-
metallics in Synthesis: A Manual; 2nd ed.; Schlosser,
Manfred, Ed., John Wiley & Sons, 2004; (g) Lee, J. Y.;
Miller, J. J.; Hamilton, S. S.; Sigman, M. S. Org. Lett.
2005, 7, 1837–1839.
2. (a) Falck, J. R.; Barma, D. K.; Mioskowski, C.; Schlama,
T. Tetrahedron Lett. 1999, 40, 2091–2094; (b) Baati, R.;
Barma, D. K.; Falck, J. R.; Mioskowski, C. J. Am. Chem.
Soc. 2001, 123, 9196–9197; (c) Barma, D. K.; Baati, R.;
Valleix, A.; Mioskowski, C.; Falck, J. R. Org. Lett. 2001,
3, 4237–4238; (d) Bejot, R.; Tisserand, S.; Reddy, L. M.;
Barma, D. K.; Baati, R.; Falck, J. R.; Mioskowski, C.
Angew. Chem., Int. Ed. 2005, 44, 2008–2011.
1H, J1 = 3J2 = 4.0 Hz, J = 12.8 Hz), 1.37–1.27 ppm (m,
2H); 13C (50 Hz, CDCl3), d 142.3, 139.6, 138.1, 129.7,
127.2, 112.3, 73.2, 51.3, 29.6, 27.0, 25.9, 22.6, 21.7 ppm; IR
m 3442, 2928, 2857, 1743, 1703, 1685, 1607, 1514, 1449,
1296, 1175, 1041, 890, 820, 803, 561, 509 cmꢀ1; MS (TOF)
m/z 273 ([M+Na]+). Analytical data for syn-(E)-4a: 1H
NMR (300 MHz, CDCl3) d 7.33 (d, 2H, 3J = 8.1 Hz), 7.21
(d, 2H, 3J = 8.1 Hz), 6.12 (d, 1H, 4J = 1.3 Hz), 4.81 (d,
3
2
3
1H, J = 10.3 Hz), 3.38–3.30 (m, 1H), 2.49–2.30 (m, 4H),
2.30–1.80 (m, 2H), 1.70–0.95 ppm (m, 5H). Analytical
1
data for 5a: H NMR (300 MHz, CDCl3) d 5.95 (s, 1H),
3
4
3
5.56 (dd, 1H, J = 7.8 Hz, J = 4.0 Hz), 4.50 (d, 1H, J =
7.8 Hz), 2.78 ppm (m, 1H); 3C (50 Hz, CDCl3), d 142.8,
140.4, 138.5, 129.6, 127.4, 113.3, 74.1, 44.7, 30.4, 27.4,
27.1, 23.5, 21.6 ppm.
7. Crystallographic data have been deposited with the
Cambridge Crystallographic Data Centre as supplemen-
tary publication numbers CCDC 295551. Copies of the
data can be obtained free of charge, on applicationto
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax:
+44 (0) 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].
8. Compound 4b was obtained as a mixture (60:40) of
diastereomers. Analytical data for 4b: major isomer: 1H
NMR (200 MHz, CDCl3) d 5.94 (d, 1H, 4J = 1.5 Hz), 3.68
(dd, 1H, 3J = 9.8 Hz, 3J = 2.2 Hz), 2.79–2.75 (m, 1H),
2.72–2.68 (m, 1H), 2.27–2.21 (m, 1H), 2.12–1.25 (m, 7H),
3. Kharasch, M. S.; Jensen, E. V.; Urry, W. H. J. Am. Chem.
Soc. 1947, 69, 1100–1105.
4. Bellesia, F.; Forti, L.; Ghelfi, F.; Pagnoni, U. M. Synth.
Commun. 1997, 27, 961–971, General procedure for the
preparation of c-halo-trihaloalkanes 2a and 2b: alkene
(22 mmol), iron powder (1.2 g, 44 mmol) and tetrachloro-
methane (18 mL, 176 mmol) in anhydrous DMF (5 mL)
were carefully warmed to 90 °C in a 250 mL round bottom
flask, fitted with a condenser (CAUTION: very exother-
mic reaction). After the reaction started violently, the dark
reaction mixture was stirred at 80 °C for 2 h. The reaction
was quenched with 5% HCl at rt and extracted with n-
hexane. The combined organic extracts were washed with
brine, dried over MgSO4 and concentrated in vacuo.
Purification of the crude product by reversed-phase
chromatography (H2O/EtOH = 2:8) afforded 2a and 2b
as a mixture (2:1) of anti/syn isomers. Analytical data for
2b: 1H NMR (300 MHz, CDCl3) d 4.75–4.60 (m, 1H),
3.08–2.90 (m, 1Hanti), 2.59–2.53 (m, 1Hsyn), 2.3–1.2 (m,
12H), 0.96 ppm (t, J = 7 Hz, 3H); 13C NMR (75 MHz,
CDCl3) d 104.1 (Csyn), 103.1 (Canti), 65.4 (Canti), 63.3
(Csyn), 62.6 (Canti), 62.3 (Csyn), 39.0 (Csyn), 32.7 (Canti), 32.2
(Csyn), 31.9 (Canti), 29.4 (Canti), 29.1 (Csyn), 28.5 (Csyn), 27.5
(Canti), 22.9, 22.0, 14.0, 13.8 ppm; MS (CI, NH3) m/z 295
([M+H]+), 312 ([M+NH4]+).
3
3
1.05 (d, 3H, J = 6.6 Hz), 0.85 ppm (d, 3H, J = 6.6 Hz);
13C (50 Hz, CDCl3) d 142.5, 111.4, 72.9, 46.8, 29.0, 28.9,
1
26.7, 25.6, 22.2, 20.9, 13.7 ppm; minor isomer: H NMR
(200 MHz, CDCl3) d 6.00 (s, 1H), 3.74 (dd, 1H, 3J =
10.5 Hz, 3J = 2.0 Hz), 3.13–3.06 (m, 1H), 2.24–1.33
(m, 9H), 1.07 (d, 3H, 3J = 6.8 Hz), 0.92 ppm (d, 3H,
3J = 6.8 Hz).
9. Compound 4c was obtained as a mixture (a/b/c =
45:30:25) of stereoisomers. Configuration of stereoisomers
could not be determined. Analytical data for 4c: 1H NMR
(300 MHz, CDCl3) d 7.5–7.2 (m, 4H, ArH), 6.12 (s, 1H,
C@CCClHc), 5.99 (s, 1H, C@CClHa), 5.79 (s, 1H,
C@CCClHb), 4.61 (d, J = 5.6 Hz, 1H, CHOHb), 4.47 (d,
J = 8.6 Hz, 1H, CHOHa and c), 3.3 (m, 1H, CH–CHOHc),
2.4–2.0 (m, 1H, CH–CHOHa and b), 2.34 (s, 3H, ArCH3),
2.0–0.7 ppm (m, 22H, CH3–(CH2)4); 13C (50 Hz, CDCl3),
d 142.83, 142.80, 141.8, 140.1, 139.9, 139.5, 137.6, 137.5,
137.0, 129.1, 129.0, 128.8, 127.0, 126.8, 126.1, 125.5,
5. CrCl2 prepared from CrCl3 via reduction with Mn0
powder. General procedure for the preparation of CrCl2:
anhydrous CrCl3 (481 mg, 3.0 mmol) and Mn0 (109 mg,
2.0 mmol) in anhydrous MeCN (4 mL) were stirred at rt
for 0.5 h under an argon atmosphere and ultrasound
irradiation. The grey and viscous reaction mixture was
then concentrated in vacuo and CrCl2 as a grey powder
was used for further reaction.
6. General procedure for the preparation of homoallylic
alcohols 4 and 5: to a suspension of CrCl2 (prepared from
CrCl3, 3.0 mmol) in anhydrous THF, was added
p-tolualdehyde (120 mL, 1.0 mmol) and 2 (0.5 mmol),
under argon atmosphere at rt. After 10 h stirring at rt, the
reaction mixture was quenched with 5% HCl and extracted
with Et2O. The ethereal extract was washed with brine,
dried over MgSO4, filtered through a small pad of
FlorisilÒ and concentrated in vacuo. Purification by
116.4c, 116.2a, 115.8b, 75.93, 75.87, 75.7, 54.5a or b
,
52.8a or b, 48.4c, 31.9, 31.1, 30.3, 29.7, 29.5, 29.34, 29.25,
29.17, 29.1, 28.9, 28.3, 27.5, 23.3, 22.9, 22.84, 22.81, 22.54,
22.45, 21.15, 21.08, 14.1, 14.0, 13.9, 13.7 ppm; MS (TOF)
m/z 331 ([M+Na]+).
10. (a) Kochi, J. K.; Davis, D. D. J. Am. Chem. Soc. 1964, 86,
5264–5271; (b) Kochi, J. K.; Singleton, D. M. J. Am.
Chem. Soc. 1968, 90, 1582–1589; (c) Furstner, A. Chem.
Rev. 1999, 99, 991–1045.
11. Alternatively the rehybridization may occur because the
adjacent carbon is disubstituted and therefore more
crowded than a simple methylene.
12. (a) Walborsky, H. M.; Duraisamy, M. J. Am. Chem.
Soc. 1984, 106, 5035–5037; (b) Walborsky, H. M.;
Rachon, J.; Goedken, V. J. Am. Chem. Soc. 1986, 108,
7435–7436.