10.1002/anie.201804684
Angewandte Chemie International Edition
COMMUNICATION
This work was supported by the NNSFC (91745110, 21673261,
21603245, 21633013 and 21703265) and a Start-up funding
from LICP. Support from the Young Elite Scientist Sponsorship
Program by CAST, CAS Interdisciplinary Innovation Team, the
Key Program of CAS (QYZDJ-SSW-SLH051), the Youth
Innovation Promotion Association CAS (2018458) and the ‘Light
of West China’ Program were also acknowledged.
Keywords: gem-Carboborylation • Alkyl Boronic Esters •
Bis(electrophile) Equivalent • 1,2-Metallate Rearrangement •
Catalyst-Control Enantioselectivity
[1]
a) D. G. Hall, Boronic Acids: Preparation and Applications in Organic
Synthesis, Medicine and Materials, Vol. 1 and 2, 2nd ed., Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011; b) R. Jana, T.
P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417-1492; c) H.
Doucet, Eur. J. Org. Chem. 2008, 2008, 2013-2030; d) B. Saito, G. C.
Fu, J. Am. Chem. Soc. 2007, 129, 9602-9603; e) D. Imao, B. W.
Glasspoole, V. S. Laberge, C. M. Crudden, J. Am. Chem. Soc. 2009,
131, 5024-5025; f) L. J. Milo, J. H. Lai, W. Wu, Y. Liu, H. Maw, Y. Li, Z.
Jin, Y. Shu, S. E. Poplawski, Y. Wu, D. G. Sanford, J. L. Sudmeier, W.
W. Bachovchin, J. Med. Chem. 2011, 54, 4365-4377.
Scheme 7. Catalyst-controlled enantioselectivity.
To probe the insightful information of this transformation, in
situ IR spectroscopy technique was applied to monitor the
reaction course of 1aa-I with MeLi and ClCOOMe (Scheme 8,
See 3D spectra in SI). Upon the addition of MeLi, the specific
absorbance of 1aa-I at 1324 cm-1 disappeared immediately,
a
new peak at 1291 cm-1 appeared. This
[2]
a) E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. A. Westcott, T. B. Marder,
Chem. Rev. 2016, 116, 9091-9161; b) B. S. L. Collins, C. M. Wilson, E.
L. Myers, V. K. Aggarwal, Angew. Chem. Int. Ed. 2017, 56, 11700-
11733; c) K. Kubota, H. Iwamoto, H. Ito, Org. Biomol. Chem. 2017, 15,
285-300; d) A. Fawcett, J. Pradeilles, Y. Wang, T. Mutsuga, E. L. Myers,
V. K. Aggarwal, Science 2017, 357, 283-286; e) C. Li, J. Wang, L. M.
Barton, S. Yu, M. Tian, D. S. Peters, M. Kumar, A. W. Yu, K. A.
Johnson, A. K. Chatterjee, M. Yan, P. S. Baran, Science 2017, 356,
eaam7355.
meanwhile,
phenomenon indicated an immediate interaction of MeLi with
1aa-I to generate 1aa-II. As ClCOOMe was added, this peak
gradually shifted to 1309 cm-1. Meanwhile, the specific
absorbance of ClCOOMe at 1786 cm-1 gradually decreased and
the specific absorbance of 1aa-III at 1708 cm-1 appeared. When
heating the mixture at 80 C, the peaks at 1786 cm-1 and 1708
o
cm-1 immediately decreased together with an observation of a
strong and broad absorbance at 1647 cm-1. At the same time,
suspension was observed in the reaction mixture. By
comparison with its standard IR spectrum, the 1647 cm-1 was
assigned to be the absorbance of LiOCOOMe. These
observations indicated that high temperature was beneficial to
both the acylation of -oxyl group of 1aa-I with ClCOOMe and
the 1,2-metalate rearrangement of 1aa-III to afford the desired
product 2aa and LiOCOOMe.
[3]
a) D. S. Matteson, Chem. Rev. 1989, 89, 1535-1551; b) D. S. Matteson,
Acc. Chem. Res. 1970, 3, 186-193; c) D. S. Matteson, R. W. H. Mah, J.
Am. Chem. Soc. 1963, 85, 2599-2603.
[4]
[5]
D. Leonori, V. K. Aggarwal, Acc. Chem. Res. 2014, 47, 3174-3183.
a) M. Kischkewitz, K. Okamoto, C. Mück-Lichtenfeld, A. Studer,
Science 2017, 355, 936; b) L. Zhang, G. J. Lovinger, E. K. Edelstein, A.
A. Szymaniak, M. P. Chierchia, J. P. Morken, Science 2016, 351, 70-
74; c) M. Silvi, C. Sandford, V. K. Aggarwal, J. Am. Chem. Soc. 2017,
139, 5736-5739.
[6]
a) D. S. Laitar, E. Y. Tsui, J. P. Sadighi, J. Am. Chem. Soc. 2006, 128,
11036-11037; b) H. Zhao, L. Dang, T. B. Marder, Z. Lin, J. Am. Chem.
Soc. 2008, 130, 5586-5594; c) M. L. McIntosh, C. M. Moore, T. B. Clark,
Org. Lett. 2010, 12, 1996-1999; d) G. A. Molander, S. R. Wisniewski, J.
Am. Chem. Soc. 2012, 134, 16856-16868; e) W. Guan, A. K. Michael,
M. L. McIntosh, L. Koren-Selfridge, J. P. Scott, T. B. Clark, J. Org.
Chem. 2014, 79, 7199-7204; f) C. M. Moore, C. R. Medina, P. C.
Cannamela, M. L. McIntosh, C. J. Ferber, A. J. Roering, T. B. Clark,
Org. Lett. 2014, 16, 6056-6059; g) K. Kubota, S. Osaki, M. Jin, H. Ito,
Angew. Chem. Int. Ed. 2017, 56, 6646-6650; h) K. Kubota, E.
Yamamoto, H. Ito, J. Am. Chem. Soc. 2015, 137, 420-424; i) T. B. Clark,
Asian J. Org. Chem. 2016, 5, 31-42; j) L. Wang, T. Zhang, W. Sun, Z.
He, C. Xia, Y. Lan, C. Liu, J. Am. Chem. Soc. 2017, 139, 5257-5264.
Y. Lee, S.-y. Baek, J. Park, S.-T. Kim, S. Tussupbayev, J. Kim, M.-H.
Baik, S. H. Cho, J. Am. Chem. Soc. 2017, 139, 976-984.
Scheme 8. Reaction course monitored by in situ IR
In summary, we have demonstrated a gem-carboborylation of
aldehydes and ketones using carbonyl group as bis(electrophile)
equivalent to synthesize various secondary and tertiary alkyl
boronic esters. The 1,2-addition of B2pin2 to carbonyls provides
-oxyl alkylboronates. Organolithiums and Grignard reagents
were applied as the C-nucleophiles for the 1,2-metallate
rearrangement process. ClCOOMe was used to increase the
leaving ability of -oxyl group. Catalytic amount of chiral ligand
could promote to form chiral alkyl boronic ester, which supported
the catalyst-controlled enantioselectivity for this transformation.
[7]
[8]
[9]
S. Aichhorn, R. Bigler, E. L. Myers, V. K. Aggarwal, J. Am. Chem. Soc.
2017, 139, 9519-9522.
a) J. R. Smith, B. S. L. Collins, M. J. Hesse, M. A. Graham, E. L. Myers,
V. K. Aggarwal, J. Am. Chem. Soc. 2017, 139, 9148-9151; b) Y. Cai,
X.-T. Yang, S.-Q. Zhang, F. Li, Y.-Q. Li, L.-X. Ruan, X. Hong, S.-L. Shi,
Angew. Chem. Int. Ed. 2018, 57, 1376-1380; c) B. Chen, P. Cao, Y.
Liao, M. Wang, J. Liao, Org. Lett. 2018, 20, 1346-1349.
Acknowledgements
This article is protected by copyright. All rights reserved.