B. Kukawska-Tarnawska et al. / Journal of Molecular Structure 928 (2009) 25–31
31
values were estimated considering the C-2 chemical shift values
(dC-2), Table 6, from the Eq. (2):
Calculating Project No. G20-9. Also we thank Michele Pavanello
for reading and commenting on the text.
K ¼ ½dðC ꢁ 2Þ ꢁ dðC ꢁ 2ÞEnolꢄ=d½ðC ꢁ 2ÞKeto ꢁ dðC ꢁ 2Þꢄ
ð2Þ
Appendix A. Supplementary data
The values for the corresponding pure tautomeric form d(C-2)Enol
(166.89 ppm) and d(C-2)Keto (181.4 ppm) were estimated from the
correlation d(C-2) = 1.081. 3J(NH,H) + 166.89 Fig. 2 in [25]. We
adopted the 3J(NH,H) values equal 0 Hz for enol-imine form and
13.4 Hz [15] for keto-amine one. The results are given in Table 6.
The predicted equilibrium constants KT increase with the relative
Supplementary data associated with this article can be found, in
References
permittivity of the solvents (e
) (R2 = 0.95). The 1H and 13C values
[1] J. M Berg, J.L. Tymoczko, L. Stryer, Biochemistry, Freeman W.H. Comp., NY and
Basingstoke, 2002.
[2] C.M. Metzler, A. Cahill, D.E. Metzler, J. Am. Ch. Soc. 102 (1980) 6075.
[3] A. Das, M.D. Trousdale, S. Ren, E.J. Lien, Antiviral Res. 44 (1999) 201.
[4] S. Ren, Z.A. Tokes, C. Osipke, B. Zhou, Y. Yen, E.J. Lien, Anticancer Res. 21 (2001)
3445.
[5] S. Ren, R. Wang, K. Komatsu, P. Bonaz-Krause, Y. Zyrianow, C.E. McKenna, C.
Osipke, Z.A. Tokes, E.J. Lien, J. Med. Chem. 45 (2002) 410.
[6] L. Song, M.A. El-Sayed, J.K. Lanyi, Science 261 (1993) 891;
D. Oesterhelt, W. Stoeckenius, in: S. Freischer, L. Packer (Eds.), Methods of
Enzymology, Biomembranes Part A, vol. 31, Academic Press, New York, 1974,
pp. 667–678;
of nuclear shielding calculated by SCF GIAO method at B3LYP/6-
31G(d,p) level were compared with the averaged of the 1H and
13C chemical shifts taking into account experimentally estimated
percentage of keto-amine forms in series of the solvents. The agree-
ment between theoretical averaged values and 13C experimental
data is excellent (r2 in the 0.989–0.999 range). The sample plots
for the mixture of tautomers in CHCl3 is given in Fig. 3.
R.H. Lozier, R.A. Bogomolni, W. Stoeckenius, Biophys. J. 15 (1975) 955.
[7] E. Hadjoudis, Mol. Eng. 5 (1995) 301;
4. Conclusions
E. Hadjoudis, I.M. Mavridis, Chem. Soc. Rev. 33 (2004) 579;
E. Hadjoudis, M. Vittorakis, I. Moustakali-Mavridis, Tetrahedron 43 (1987)
1345.
The molecule of N-(5-nitrosalicylidene)-2-butylamine contain-
ing asymmetric carbon atom C20 was investigated in the form of
the S or R enantiomers, each appearing in the keto-amino and
enol-imine tautomeric form. For the comparison, two other con-
formers named S*, and R* originating as a result of the interchang-
ing of the CH3 and the C2H5 groups were studied. The calculated
[8] T. Dziembowska, Pol. J. Chem. 72 (1998) 193.
[9] A. Filarowski, A. Koll, A. Karpfen, P. Wolschann, Chem. Phys. 297 (2004) 323.
[10] M. Gavranic, B. Kaitner, E. Mestrovis, J. Chem. Crystallogr. 26 (1996) 1071.
[11] W.M.F. Fabian, L. Antonov, D. Nedeltcheva, F.S. Kamonuah, I.P.J. Taylor, J. Phys.
Chem. A 108 (2004) 7603.
[12] P.I. Nagy, W.M.F. Fabian, J. Phys. Chem. B 110 (2006) 25026.
[13] A. Giardini Guidoni, S. Piccirillo, D. Scuderi, M. Satta, T.M. Di Palma, M.
Speranza, A. Filippi, A. Paladini, Int. J. Photenergy 3 (2001) 223.
[14] Ajith D. Gunatilleka, Colin F. Poole, Analyst 125 (2000) 127.
[15] Z. Rozwadowski, Magn. Reson. 45 (2007) 605.
[16] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
V.G. Zakrzewski, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, S.S.
Milliam, J. Iyengar, J. Tomasi, B. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, E. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li,
J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D.
Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B.
Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, L. Komaromi, R.L. Martin, D.J. Fox, T. Keith, A.M.
Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B.G.
Johnson, W. Chen, M.W. Wong, C. Gonzales, J.A. Pople, Gaussian 03, Revision
A.1. Gaussian, Inc., Pittsburgh, PA, 2003.;
K. Wolin
´ ski, J.F. Hilton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251. and
references therein.
[17] J.B. Foresman, M. Head-Gordon, J.A. Pople, M.J. Frisch, J. Phys. Chem. 96 (1992)
135.
[18] Z. Slanina, Contemporary theory of chemical isomerism, ACADEMIA (1986) 159.
[19] D.A. McQuarrie, Statistical Thermodynamics, Harper and Row, New York, 1973.
[20] A.D. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899.
[21] M.W. Wong, J. Frisch, K.B. Wiberg, J. Am. Chem. Soc. 113 (1991) 4776;
M.W. Wong, K.B. Wiberg, M.J. Frisch, J. Am. Chem. Soc. 114 (1992) 523.
[22] M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber, K. Morokuma, J.
Phys. Chem. 100 (1996) 19357.
[23] T. Dziembowska, K. Ambroziak, I. Majerz, J. Mol. Struct. 738 (2005) 15.
[24] I. Majerz, A. Pawlukojc´, L. Sobczyk, T. Dziembowska, E. Grech, A. Szady-
Chełmieniecka, J. Mol. Struct. 552 (2000) 243.
Gibbs free energies e.g.
in the weakly interacting environment indicate the balance of the
enol-imine and keto-amino forms. G are small and it is easy to
notice that they can be sensitive to the influence of the polar envi-
ronment. The comparison of the calculated G for the S-keto-ami-
no and S-enol-imine of the N-(5-nitrosalicylidene)-2-butylamine
and the G for the R*-keto-amino and R*-enol-imine has showed
DG for the reaction of the tautomerization
D
D
D
much more dissimilarity. The electronic and Gibbs energies for
the investigated compounds calculated with DFT B3LYP/6-
31G(d,p) and combined with the Onsager model of solvent for
T = 298.15 K and p = 1 atm suggest the dominance of the R* keto-
amine tautomer independently on the solvents’ polarity. Such a
solvent effect was detected in the experimental IR and NMR spec-
trum. The detailed analysis of the free energy of the both dimethyl
analogs e.g. S and R* molecules suggest that the presence of the
nearby CH3 group should favorites on the enol-imine form than
the keto-amine. All these results have predicted that apart from
solvent and temperature effects also the intramolecular flexible
geometry of the alkyl residue of the N-(5-nitrosalicylidene)-2-
butylamine can be a significant factor influencing the tautomeric
equilibrium of the keto-amino:enol-imino forms.
Acknowledgements
The calculations were performed on the Cluster of IBM eServ-
er325 of the computer at the Interdisplinary Centre of Mathemat-
ical and Computational Modelling Warsaw University (ICM). We
acknowledge for computer time on these installations within the
[25] Z. Rozwadowski, T. Dziembowska, Magn. Reson. Chem. 37 (1999) 274 (p. 277,
reference to Fig. 1; The values of
D
C-2(OD) increase linearly with 3J(NH,H)).
[26] I. Król-Starzomska, M. Rospenk, Z. Rozwadowski, T. Dziembowska, Polish. J.
Chem. 74 (2000) 1441.