4930 Organometallics, Vol. 25, No. 20, 2006
Table 1. Selected Bond Lengths and Angles (in Å and deg, respectively) for Derivatives 2, 3, and 3′
Notes
N-Rh
C9-Rh
N-Rh-C9
N-P
P-C9
N-P-C9
∑C9R
2 (X-ray)
3 (X-ray)
3a
1.567(9)
1.620(2)
1.662
1.856(2)
1.768(3)
1.803
116.70(10)
100.51(12)
97.3
326.3
349.8
346.3
355.9
2.123(2)
2.117
3.878
2.188(3)
2.186
2.180
74.40(9)
74.4
43.8
3′a
1.615
1.818
106.7
a Predicted at the DFT(B3PW91) level of theory.
Chart 3. Limiting Structures for K2-N,C Complexes
crystal size 0.2 × 0.2 × 0.5 mm3, 10 508 reflections collected
(3843 independent, Rint ) 0.0423), 302 parameters, R1 [I > 2σ(I)]
) 0.0440, wR2 [all data] ) 0.1130, largest diff peak and hole
0.314 and -0.302 e Å-3. 3: C38H31NPRh, M ) 635.52, triclinic,
space group P1h, a ) 9.6858(8) Å, b ) 11.6141(10) Å, c ) 13.6750-
(11) Å, R ) 106.9820(10)°, â ) 94.884(2)°, γ ) 96.293(2)°, V
)1451.2(2) Å3, Z ) 2, µ(Mo KR) ) 0.672 mm-1, crystal size
0.1 × 0.3 × 0.6 mm3, 8573 reflections collected (5880 inde-
pendent, Rint ) 0.0208), 370 parameters, R1 [I > 2σ(I)] ) 0.0353,
wR2 [all data] ) 0.0835, largest diff peak and hole 0.603 and
Derived from 1-Aza-2-phosphaallyl Ligands
4
8.3 Hz, C15,19), 131.2 (d, JC,P ) 2.3 Hz, C17), 128.8 (s, C22,24),
127.8 (d, 3JC,P ) 11.3 Hz, C16,18), 127.5 (s, C3,6), 127.0 (d, 3JC,P
)
1.5 Hz, C1,8), 126.4 (d, 4JC,P ) 2.3 Hz, C2,7), 123.3 (d, 3JC,P ) 18.9
-0.335 e Å-3
.
1
Hz, C21,25), 119.5 (s, C4,5), 117.3 (s, C23), 49.8 ppm (d, JC,P
)
Computational Details. Rhodium and phosphorus were treated
with a Stuttgart-Dresden pseudopotential in combination with their
adapted basis set.25 In all cases, the basis set has been augmented
by a set of polarization functions (f for Rh and d for P).26 Carbon,
nitrogen, and hydrogen atoms have been described with a 6-31G-
(d,p) double-ú basis set.27 Calculations were carried out at the DFT
level of theory using the hybrid functional B3PW91.28 Geometry
optimizations were carried out without any symmetry restrictions;
the nature of the extrema (minimum) was verified with analytical
frequency calculations. All these computations have been performed
with the Gaussian 9829 suite of programs. The electronic density
has been analyzed using the natural bonding analysis (NBO)
technique.21
75.5 Hz, C9). MS (EI, 70 eV) m/z (%): 441 [M]+, 276 [M - Flu]+,
165 [Flu]+. Mp: 243 °C. Anal. Calcd for C31H24NP: C, 84.35; H,
5.44; N, 3.17. Found: C, 83.80; H, 5.30; N, 3.10.
Preparation of 3 from 2. To a solution of 2 (95.7 mg, 0.216
mmol) in THF (6 mL) was added at -78 °C 0.144 mL of a 1.6 M
solution of nBuLi in hexanes, and the solution was stirred 30 min
at room temperature. The reaction medium was cooled to 0 °C,
and a solution of [Rh(µ-Cl)(nbd)]2 (50 mg, 0.108 mmol) in THF
(3 mL) was added. After warming to room temperature and
subsequent stirring for 2 h, the solvent was eliminated under
vacuum. The yellow residue was extracted with CH2Cl2 (10 mL)
and evaporated to dryness, yielding a yellow solid (123 mg, 90%).
Crystals suitable for X-ray crystallography were obtained from a
CHCl3 solution at -25 °C. 31P{1H} NMR (202.5 MHz, CDCl3,
243 K): δ 24.1 ppm (d, 2JP,Rh ) 16.2 Hz). 1H NMR (500.3 MHz,
Acknowledgment. We are grateful to the CNRS, UPS, and
French Ministry of Research and New Technologies (ACI
JC4091) for financial support of this work. CalMip (CNRS,
Toulouse, France) is acknowledged for calculation facilities.
3
CDCl3, 243 K): δ 7.98 (d, JH,H ) 7.6 Hz, 2H, H4,5), 7.85 (dd,
3
3
3JH,P ) 11.8 Hz, JH,H ) 7.5 Hz, 4H, H15,19), 7.63 (t, JH,H ) 7.0
Hz, 2H, H17), 7.50 (m, 4H, H16,18), 7.15-7.08 (m, 6H, H2,3,6,7,22,24),
Supporting Information Available: Cartesian coordinates for
the optimized complexes 3 and 3′, atom numbering for the NMR
assignments, and crystallographic data for derivatives 2 and 3
including cif files. This material is available free of charge via the
3
3
6.88 (d, JH,H ) 7.9 Hz, 2H, H1,8), 6.84 (t, JH,H ) 7.3 Hz, 1H,
3
H23), 6.66 (d, JH,H ) 7.8 Hz, 2H, H21,25), 4.08 (br s, 2H, H26,27),
2
3.48 (br s, 2H, H30,31), 1.47 (br s, 2H, H28,29), 1.07 (d, JH,H ) 8.6
Hz, 1H, H32A), 0.83 ppm (d, JH,H ) 8.6 Hz, 1H, H32B). 13C{1H}
3
NMR (125.8 MHz, CDCl3, 243 K): δ 149.5 (s, C20), 141.4 (d,
2JC,P ) 10.1 Hz, C10,13), 134.1 (d, 2JC,P ) 11.31 Hz, C11,12), 132.60
(s, C17), 132.0 (d, 2JC,P ) 10.7 Hz, C15,19), 131.25 (d, 1JC,P ) 74.8
Hz, C14), 129.1 (d, 3JC,P ) 11.7 Hz, C16,18), 128.9 (s, C22,24), 123.9
(s, C2,7), 121.8 (d, 3JC,P ) 14.0 Hz, C21,25), 121.4 (s, C1,8), 120.4 (s,
OM0605377
(22) SADABS, Program for data correction, version 2.10; Bruker-AXS,
2003.
(23) Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467-473.
(24) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure
Refinement; University of Go¨ttingen, 1997.
(25) (a) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.
Theor. Chim. Acta 1990, 77, 123-141. (b) Bergner, A.; Dolg, M.; Kuechle,
W.; Stoll, H.; Preuss, H. Mol. Phys. 1993, 80, 1431-1441.
(26) Ehlers, A. W.; Bo¨hme, M.; Dapprich, S.; Gobbi, A.; Ho¨llwarth,
A.; Jonas, V.; Ko¨hler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G.
Chem. Phys. Lett. 1993, 208, 111-114.
C
3,6), 119.6 (s, C4,5) 119.5 (s, C23), 61.9 (br s, C32), 58.2 (d, 3JC,P
)
7.8 Hz, C26,27), 51.7 (d, 2JC,P ) 9.6 Hz, C28,29), 50.3 (s, C30,31), 33.90
ppm (dd, 1JC,P ) 109.3, 1JC,Rh ) 10.5 Hz, C9). MS (DCI/CH4) m/z
(%): 636 [MH]+ (100), 635 [M]+ (75), 544 [M - COD]+ (4).
Mp: 276 °C. Anal. Calcd for C38H31NPRh: C, 71.82; H, 4.90; N,
2.20. Found: C, 71.36; H, 4.83; N, 2.17.
X-ray Crystal Structures of 2 and 3. Data for all structures
were collected at 133(2) K using an oil-coated shock-cooled crystal
on a Bruker-AXS CCD 1000 diffractometer (λ ) 0.71073 Å).
Semiempirical absorption corrections were employed.22 The struc-
tures were solved by direct methods (SHELXS-97)23 and refined
using the least-squares method on F2.24 Crystallographic data
(excluding structure factors) have been deposited with the Cam-
bridge Crystallographic Data Centre as supplementary publica-
tion nos. CCDC-297701 (2) and 297702 (3). These data can be
(or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk). Crystal data
for 2: C31H24NP, M ) 441.48, monoclinic, space group P21/n, a
) 9.4833(9) Å, b ) 12.6243(13) Å, c ) 19.2691(19) Å, â )
(27) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.
(28) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Burke,
K.; Perdew, J. P.; Yang, W. Electronic Density Functional Theory: Recent
Progress and New Directions, Dobson, J. F., Vignale, G. Das, M. P., Eds.;
1998.
(29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratman,
R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K.
N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi,
R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.;
Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowswi, J.; Ortiz,
J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Gomperts, R.; Martin, R.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill,
P. M. W.; Jonhson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-
Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, ReVision A.11;
Gaussian, Inc.: Pittsburgh, PA, 1998.
98.991(2)°, V ) 2278.6(4) Å3, Z ) 4, µ(Mo KR) ) 0.141 mm-1
,