Total Synthesis of (+)-Cananodine
SHORT COMMUNICATION
veen, Recl. Trav. Chim. Pays-Bas 1972, 91, 1433–1440; T. Okat-
ani, J. Koyama, K. Tagahara, Y. Suzuta, Heterocycles 1987, 26,
595–597; J. Koyama, T. Okatani, T. Teruyo, K. Tagahara, S.
Kiyoshi, Y. Suzuta, H. Irie, Heterocycles 1987, 26, 925–927.
[4] D. Craig, G. D. Henry, Tetrahedron Lett. 2005, 46, 2559–2562.
[5] a) D. Bourgeois, D. Craig, N. P. King, D. M. Mountford, An-
gew. Chem. Int. Ed. 2005, 44, 618–621; b) D. Craig, F. Grelle-
pois, Org. Lett. 2005, 7, 463–465; c) D. Craig, F. Grellepois,
A. J. P. White, J. Org. Chem. 2005, 70, 6827–6832; d) D. Craig,
N. P. King, J. T. Kley, D. M. Mountford, Synthesis 2005, 3279–
3282; e) D. Bourgeois, D. Craig, F. Grellepois, D. M. Mount-
ford, A. J. W. Stewart, Tetrahedron 2006, 62, 483–495; for a
two-step, two-pot sequence involving classical LDA/Me3SiCl-
mediated Ireland–Claisen rearrangement followed by decar-
boxylation, see: f) A. H. Davidson, N. Eggleton, I. H. Wallace,
J. Chem. Soc., Chem. Commun. 1991, 378–380.
7.5 Hz, 1 H, CH alkene), [4.96 (ddd, J = 17.0, 2.0, 1.0 Hz, 1
H), and 4.93 (ddd, J = 11.5, 2.0, 1.0 Hz, 1 H), CH2 alkene×2],
4.43 (ddd, J = 8.5, 3.5, 3.5 Hz, 1 H, CHN), [4.26 (dd, J = 9.0,
8.5 Hz, 1 H), and 4.20 (dd, J = 9.0, 3.0 Hz, 1 H), CH2O×2],
2.43–2.33 [m, 1 H, CH(CH3)2], 2.20–2.11 (1 H, m, δ amide),
1.67–1.62 (m, 2 H, β amide), 1.40–1.32 (q, J = 8.0 Hz, 2 H, γ
amide), 1.00 (d, J = 7.0 Hz, 3 H, CH3), [0.92 (d, J = 7.0 Hz, 3
H), and 0.88 (d, J = 7.0 Hz, 3 H), Me of isopropyl×2]. 13C
NMR (75 MHz): δ = 173.3 (C amide), 154.1 (C carbamate),
144.3 (CH alkene), 112.9 (CH2 alkene), 63.3 (OCH2), 58.4
(NCH), 37.7 (CH δ amide), [35.9, 35.6 (CH2 α, γ amide×2)],
28.4 [CH(CH3)2], 22.2 (CH2 β amide), 20.2 (CH3 Me), [18.0
and 14.7 (CH3 of isopropyl×2)]. MS(CI): m/z = 271 [M +
NH4]+, 254 [MH]+, 184, 171, 130, 124, 84, 49; calcd. for
C14H23NO3 [MH]+ 254.1756, found 254.1750.
[9] H.-Y. Lee, H. S. Tae, B. G. Kim, H.-M. Choi, Tetrahedron Lett.
2003, 44, 5803–5806.
[10] 4-Methyl-2-(4-tolylsulfonyl)-4-pentenoic acid was prepared by
hydrolysis (LiOH, H2O) of the corresponding ethyl ester, which
was synthesised by methallylation of ethyl (4-tolylsulfonyl)ace-
tate prepared as described in ref.[4]
[6] For a recent report of the mechanistically distinct Carroll re-
arrangement of an allylic α-phenylsulfonyl ester under highly
basic conditions in the context of vitamin D3 analogue synthe-
sis, see: M. A. Hatcher, G. H. Posner, Tetrahedron Lett. 2002,
43, 5009–5012.
[7] A. G. M. Barrett, R. A. E. Carr, S. V. Attwood, G. Richardson,
N. D. A. Walshe, J. Org. Chem. 1986, 51, 4840–4856.
[11] See the Supporting Information for spectroscopic data for nat-
ural and synthetic 1, and full experimental details and charac-
terisation data for all synthetic intermediates.
[12] Personal communication from Professor Yang-Chang Wu.
Received: May 11, 2006
[8] Spectroscopic data for 8: Rf = 0.29 (20% EtOAc/petroleum
ether). [α]2D4 = +73.9 (c = 6.0, CHCl ); IR (film): ν
2929, 2885, 1734, 1471, 1464, 1363, 1255, 1178, 1097, 837, 779,
= 2954,
˜
3
max
1
669 cm–1. H NMR (400 MHz): δ = 5.68 (ddd, J = 17.5, 10.5,
Published Online: July 3, 2006
Eur. J. Org. Chem. 2006, 3558–3561
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3561