ORGANIC
LETTERS
2006
Vol. 8, No. 24
5493-5496
Thio-isoglobotrihexosylceramide, an
Agonist for Activating Invariant Natural
Killer T Cells
Chengfeng Xia,† Dapeng Zhou,*,‡ Chengwen Liu,‡ Yanyan Lou,‡ Qingjia Yao,†
Wenpeng Zhang,† and Peng George Wang*,†
Departments of Biochemistry and Chemistry, The Ohio State UniVersity, Columbus,
Ohio 43210, and the Department of Melanoma Medical Oncology, UniVersity of Texas
M.D. Anderson Cancer Center, 7455 Fannin Street #SCR2.3150,
Houston, Texas 77054
pgwang@chemistry.ohio-state.edu; dzhou@mdanderson.org
Received September 5, 2006
ABSTRACT
Thio-isoglobotrihexosylceramide (S-iGb3) might be resistant to
r-galactosidases in antigen-presenting cells and have a longer retaining time
in the lysosome before being loaded to CD1d. The biological assay showed that S-iGb3 demonstrates a much higher increase as a stimulatory
ligand toward invariant natural killer T (iNKT) cells as compared to iGb3.
The well-known CD4+ and CD8+ T cells of the immune sys-
tem typically recognize specific peptide antigens presented
by major histocompatibility complex (MHC) class I or MHC
class II molecules.1 However, a unique subset of T cells called
invariant natural killer T (iNKT) cells recognize glycolipid
antigens presented by the MHC class I-like molecule called
CD1d. iNKT cells represent a distinct population of T cells
that express conserved Râ T cell receptors (TCR) and natural
killer (NK) receptors.2,3 Mouse (m) VR14 and human (h)
VR24 NKT cells regulate a number of critical biological
conditions in vivo, including malignancy, infection, and
autoimmune diseases, through the rapid secretion of T helper
1 (Th1) and Th2 cytokines and chemokines (Figure 1).4,5
It was found that R-galactosylceramides can stimulate
iNKT cells to produce both interferon (IFN)-γ and interleukin
(IL)-4 cytokines.6 Recently, the first natural glycosphingo-
lipid ligand, isoglobotrihexosylceramide (iGb3), was found
to stimulate both human VR24 NKT cells and mouse VR14
iNKT cells.7 In the lysosome, â-hexosaminidases remove the
terminal GalNAc of iGb4 to produce iGb3 (Figure 2). Subse-
quently, iGb3 is degraded to â-lactosylceramide (â-LacCer)
by the removal of the terminal Gal with R-galactosidase.
(4) Smyth, M. J.; Crowe, N. Y.; Hayakawa, Y.; Takeda, K.; Yagita, H.;
Godfrey, D. I. Curr. Opin. Immunol. 2002, 14, 165.
(5) Serizawa, I.; Koezuka, Y.; Amao, H.; Saito, T. R.; Takahashi, K.
W. Exp. Anim. 2000, 49, 171.
(6) (a) Xia, C.; Yao, Q.; Schuemann, J.; Rossy, E.; Chen, W.; Zhu, L.;
Zhang, W.; De Libero, G.; Wang, P. G. Bioorg. Med. Chem. Lett. 2006,
16, 2195. (b) Kawano, T.; Cui, J.; Koezuka, Y.; Toura, I.; Kaneko, Y.;
Motoki, K.; Ueno, H.; Nakagawa, R.; Sato, H.; Kondo, E.; Koseki, H.;
Taniguchi, M. Science 1997, 278, 1626. (c) Wu, D.; Xing, G.-W.; Poles,
M. A.; Horowitz, A.; Kinjo, Y.; Sullivan, B.; Bodmer-Narkevitch, V.;
Plettenburg, O.; Kronenberg, M.; Tsuji, M.; Ho, D. D.; Wong, C.-H. Proc.
Natl. Acad. Sci. U.S.A. 2005, 102, 1351.
(7) Zhou, D.; Mattner, J.; Cantu, C.; Schrantz, N., III; Yin, N.; Gao, Y.;
Sagiv, Y.; Hudspeth, K.; Wu, Y.-P.; Yamashita, T.; Teneberg, S.; Wang,
D.; Proia Richard, L.; Levery Steven, B.; Savage Paul, B.; Teyton, L.;
Bendelac, A. Science 2004, 306, 1786.
† The Ohio State University.
‡ University of Texas M.D. Anderson Cancer Center.
(1) (a) Krummel, M. F.; Davis, M. M. Curr. Opin. Immunol. 2002, 14,
66. (b) Bromley, S. K.; Burack, W. R.; Johnson, K. G.; Somersalo, K.;
Sims, T. N.; Sumen, C.; Davis, M. M.; Shaw, A. S.; Allen, P. M.; Dustin,
M. L. Annu. ReV. Immunol. 2001, 19, 375. (c) Gao, G. F.; Jakobsen, B. K.
Immunol. Today 2000, 21, 630.
(2) Parekh, V. V.; Wilson, M. T.; Van Kaer, L. Crit. ReV. Immunol.
2005, 25, 183.
(3) Bendelac, A.; Rivera, M. N.; Park, S.-H.; Roark, J. H. Annu. ReV.
Immunol. 1997, 15, 535.
10.1021/ol062199b CCC: $33.50
© 2006 American Chemical Society
Published on Web 10/31/2006