1542
Organometallics 2008, 27, 1542–1549
Lewis Base Adducts Derived from Transfer Hydrogenation
Catalysts: Scope and Selectivity
Zachariah M. Heiden, Bradford J. Gorecki, and Thomas B. Rauchfuss*
School of Chemical Sciences, UniVersity of Illinois, Urbana, Illinois 61801
ReceiVed October 5, 2007
The coordination tendencies of the unsaturated 16e Lewis acid [Cp*Ir(TsDPEN)]+ ([1H]+), where
TsDPEN is H2NCHPhCHPhNTs-, are surveyed, together with parallel studies on analogous complexes
such TsDACH (TsDACH ) H2NC6H10NTs-) and Tsen (Tsen ) H2NC2H4NTs-) derivatives as well as
Rh analogues. Crystallographic analyses of the adducts of [Cp*IrL(TsDPEN)]+, where L ) NCMe, NH3,
PPh3, and CO, and [Cp*Ir(CO)(R,R-TsDACH)]+ are described. In the TsDPEN system, the Lewis base
adducts contain an absolute configuration that is opposite that for the TsDPEN ligand and feature equatorial
phenyl groups. In the case of [Cp*Ir(CO)(R,R-TsDACH)]+, both R and S metal centers cocrystallize.
Isomerization of the R to the S metal center was first order in [Cp*(R-Ir)(CO)(R,R-TsDACH)]+ with
minimal solvent effects. The pKa of the amine of the Lewis base adducts correlated linearly with the pKa
of the free ligand in MeCN and the pKa of the amine (H2NCHPhCHPhNTs) of the Lewis base adduct in
MeCN. Amines with pKa < 16 (MeCN scale), in the absence of additional hydrogen bonding to the
TsDPEN ligand set, do not to bind to [1H]+, whereas bulky bases with pKa > 20 deprotonated the
iridium amine.
Lewis acids derived from the amine-hydrides and bis-amides.7
Introduction
Specifically, [Cp*Ir(TsDPEN)]+, [1H]+ (where TsDPEN is
H2NCHPhCHPhNTs-), proved to be a versatile Lewis acid that
Catalysis by chiral Lewis acids is a highly active area that
originated with Koga and co-workers, who in 1979 described
the use of menthoxyaluminum chloride to induce asymmetric
Diels–Alder reactions.1 Of the many subsequent developments
in chiral catalysis,2 one of the most striking is the asymmetric
transfer hydrogenation using metal-amine hydride catalysts.3–5
The key feature of most transfer hydrogenation catalysts is the
presence of a protic N-H functionality adjacent to a hydridic
M-H subunit, i.e., L4Hδ-M-NHδ+R2. These two hydrogen atoms
transfer to polar unsaturated substrates avoiding direct coordina-
tion of the substrate to the metal. This hydrogen transfer converts
the catalyst into a 16e amido entity L4M-NR2, which can add
H2 to re-form the 18e amino hydride. In addition to the studies
by Ikariya and Noyori, Morris, Casey, and their co-workers have
examined several mechanistic features of the Noyori-Ikariya
catalysts.4,6
is not poisoned by either water or related oxygenic ligands8,9
and has been recently shown to serve as a hydrogenation
catalyst.10 Noyori et al. also recently described a related
complex, [(p-cymene)Ru(OTf)(TsDPEN)], which is also an
excellent hydrogenation catalyst.11 In this paper, we describe
the binding of neutral Lewis bases by [1H]+ including guidelines
for predicting which bases will bind and their relative affinity.
A future report will describe the addition of anions to this same
Lewis acid.12
Results
The “Naked” Cation [1H]+. For this work, the principal
starting metal complex was the 16e Ir(III) amido-amine, which
(6) (a) Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.;
Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104–15118.
(b) Guo, R.; Chen, X.; Elpelt, C.; Song, D.; Morris, R. H. Org. Lett. 2005,
7, 1757–1759. (c) Abbel, R.; Abdur-Rashid, K.; Faatz, M.; Hadzovic, A.;
Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2005, 127, 1870–1882. (d)
Clapham, S. E.; Guo, R.; Zimmer-De Iuliis, M.; Rasool, N.; Lough, A.;
Morris, R. H. Organometallics 2006, 25, 5477–5486. (e) Koike, T.; Ikariya,
T. AdV. Synth. Catal 2004, 346, 37–41. (f) Koike, T.; Ikariya, T.
Organometallics 2005, 24, 724–730. (g) Koike, T.; Ikariya, T. J. Organomet.
Chem. 2007, 692, 408–419.
Within the realm of transfer hydrogenation catalysis, an
opportunity was defined by our recent synthesis of a family of
* Corresponding author. E-mail: rauchfuz@uiuc.edu.
(1) Hashimoto, S.; Komeshima, N.; Koga, K. J. Chem. Soc., Chem.
Commun. 1979, 437–438.
(2) Faller, J. W.; Lavoie, A. R.; Sarantopoulos, N. , Strategies for
improving enantiomeric purities via the tandem use of mirror-image catalysts
and controlling reversible epimerizations. In Methologies in Asymmetric
Catalysis, Malhotra, S. V., Ed.; ACS Symposium Series 880; American
Chemical Society: Washington, DC, 2004; pp 29–41.
(7) Heiden, Z. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 2006, 128,
13048–13049.
(8) (a) Wu, X.; Xiao, J. Chem. Commun. 2007, 2449–2466. (b) Loh,
T.-P.; Chua, G.-L Chem. Commun. 2006, 2739–2749.
(3) (a) Samec, J. S. M.; Bäckvall, J.-E.; Andersson, P. G.; Brandt, P.
Chem. Soc. ReV 2006, 35, 237–248. (b) Clapham, S. E.; Hadzovic, A.;
Morris, R. H Coord. Chem. ReV. 2004, 248, 2201–2237. (c) Blacker, A. J.;
Mellor, B. J. Preparation of chiral arylalkanols by transfer hydrogenation
using chiral metal cyclopentadiene complex catalysts. (Zeneca Ltd., UK)
WO9842643, 1998.
(9) Heiden, Z. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 2007, 129,
14303–14310.
(10) Ohkuma, T.; Utsumi, N.; Watanabe, M.; Tsutsumi, K.; Arai, N.;
Murata, K. Org. Lett. 2007, 9, 2565–2567.
(11) (a) Ohkuma, T.; Utsumi, N.; Tsutsumi, K.; Murata, K.; Sandoval,
C.; Noyori, R. J. Am. Chem. Soc. 2006, 128, 8724–8725. (b) Ohkuma, T.;
Tsutsumi, K.; Utsumi, N.; Arai, N.; Noyori, R.; Murata, K. Org. Lett. 2007,
9, 255–257. (c) Sandoval, C. A.; Ohkuma, T.; Utsumi, N.; Tsutsumi, K.;
Murata, K.; Noyori, R. Chem. Asian J. 2006, 1, 102–110.
(12) Heiden, Z. M. ; Letko, C. S.; Rauchfuss, T. B. In preparation.
(4) (a) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4,
393–406. (b) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97–
102.
(5) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300–1308.
10.1021/om700996m CCC: $40.75
2008 American Chemical Society
Publication on Web 03/13/2008