LETTER
Baker’s Yeast Catalyzed Reduction of s-Symmetrical 1,3-Cyclopentadiones
2181
Acknowledgment
O
5-bromonicotinic
acid, EDC, DMAP
Br
This research was financially supported in part by Frontier Research
Program and the 21st Century Center of Excellence Program ‘De-
velopment of Drug Discovery Frontier Integrated from Tradition to
Proteome’ of the Ministry of Education, Culture, Sport and Techno-
logy, Japan.
O
13b
MeO2C
CH2Cl2
r.t., 20 h
99%
S
O
S
N
Scheme 4
References and Notes
(1) See, for example: Wong, C.-H.; Whitesides, G. M. Enzymes
in Synthetic Organic Chemistry, In Tetrahedron Organic
Chemistry Series, Vol. 12; Baldwin, J. E.; Magnus, P. D.,
Eds.; Pergamon Press: Oxford, 1994.
(2) (a) Sih, C. J. Angew. Chem., Int. Ed. Engl. 1984, 23, 570.
(b) Sih, C. J. Angew. Chem., Int. Ed. Engl. 1989, 28, 695.
(c) Whitesides, G. M.; Wong, C.-H. Angew. Chem., Int. Ed.
Engl. 1985, 24, 617. (d) Jones, J. B. Tetrahedron 1986, 42,
3351.
(3) Prelog, V. Pure Appl. Chem. 1968, 9, 119.
(4) (a) Brooks, D. W.; Mazdiyanski, H.; Grothaus, P. G. J. Org.
Chem. 1987, 52, 3223. (b) Brooks, D. W.; Grothaus, P. G.;
Irwin, W. L. J. Org. Chem. 1982, 47, 2820.
(5) (a) Kitahara, T.; Miyake, M.; Kido, M.; Mori, K.
Tetrahedron: Asymmetry 1990, 1, 775. (b) Mori, K.;
Fujiwhara, M. Tetrahedron 1988, 44, 343. (c) Mori, K.;
Mori, H. Org. Synth. 1990, 68, 56. (d) Fuhshuku, K.; Funa,
N.; Akeboshi, T.; Ohta, H.; Hosomi, H.; Ohba, S.; Sugai, T.
J. Org. Chem. 2000, 65, 129.
(6) (a) Iwamoto, M.; Kawada, H.; Tanaka, T.; Nakada, M.
Tetrahedron Lett. 2003, 44, 7239. (b) Watanabe, H.;
Iwamoto, M.; Nakada, M. J. Org. Chem. 2005, 70, 4652.
(c) Wei, Z.-L.; Li, Z. Y.; Lin, G.-Q. Tetrahedron:
Asymmetry 2001, 12, 229. (d) Wei, Z.-L.; Li, Z.-Y.; Lin, G.-
Q. Synthesis 2000, 1673. (e) Inoue, T.; Hosomi, K.; Araki,
M.; Nishide, K.; Node, M. Tetrahedron: Asymmetry 1995, 6,
31.
Figure 3
O
Br
5-bromonicotinic
O
acid, EDC, DMAP
14b
MeO2C
S
S
CH2Cl2
r.t., 20 h
96%
N
O
(7) Gramatica, P.; Manitto, P.; Monti, D.; Speranta, G.
Tetrahedron 1988, 44, 1299.
(8) (a) Brooks, D. W.; Grothaus, P. G.; Irwin, W. L. J. Org.
Chem. 1982, 47, 2820. (b) Not only baker’s yeast but also
Saccharomyces cerevisiae (brewing yeast), Bacillus
thuringiensis afforded excellent results: (c) Kosmol, H.;
Kieslish, K.; Vossing, R.; Koch, H. J.; Petzoldt, K.; Gibian,
H. Justus Liebigs Ann. Chem. 1967, 701, 198. (d) Dai, W.
M.; Zhou, W. S. Tetrahedron 1985, 41, 4475.
Scheme 5
(9) The stereochemistry of 13b (Scheme 4, Figure 3) and 14b
(Scheme 5, Figure 4) was confirmed by X-ray
crystallography after deriving to bromonicotinates.
Compound 13b: colorless oil. 1H NMR (400 MHz, CDCl3):
d = 0.98 (s, 3 H), 1.24–1.35 (m, 1 H), 1.39–1.72 (m, 5 H),
1.92–2.00 (m, 1 H), 2.05 (br s, 1 H), 2.15–2.24 (m, 1 H),
2.26–2.37 (m, 3 H), 2.43–2.52 (m, 1 H), 3.67 (s, 3 H), 4.11
(br s, 1 H). 13C NMR (100 MHz, CDCl3): d = 19.2, 23.0,
25.3, 27.8, 29.2, 33.4, 33.9, 51.6, 53.2, 77.2, 174.3, 220.8.
Compound 14b: colorless oil. 1H NMR (400 MHz, CDCl3):
d = 0.97, (s, 3 H), 1.44–1.73 (m, 4 H), 2.00–2.07 (m, 1 H),
2.12–2.22 (m, 1 H), 2.27–2.37 (m, 2 H), 2.42–2.53 (m, 2 H),
3.14 (br s, 1 H), 3.69 (s, 3 H), 4.21 (br dt, J = 4.4, 2.2 Hz, 1
H). 13C NMR (100 MHz, CDCl3): d = 18.7, 18.9, 27.2, 29.2,
33.1, 34.0, 51.9, 53.8, 76.8, 175.1, 221.3.
(10) In order to obtain high reproducibility in the reaction with
8 mM substrate, newly opened baker’s yeast must be used.
If long-term-stored yeast (longer than ca. 6 months at 4 °C)
is used in the reaction, a reduced de is observed. The repro-
duced results were obtained with baker’s yeast (Sigma, type
II, lot. No. 125K0062).
Figure 4
Synlett 2006, No. 14, 2176–2182 © Thieme Stuttgart · New York