C O M M U N I C A T I O N S
A key feature of the cycle in Scheme 1 is the set of three
acylation strategies that employ either Lewis acid/Lewis base
combinations or a sterically hindered Lewis acid to promote the
reaction of 2 with acid chlorides. The other essential feature is the
use of SnCl2 and ZnCl2 as both Lewis acids and chloride donors.
Acknowledgment. We thank the National Science Foundation
(Grant CHE-0316823) for financial support and Dr. David S. Laitar
for crystallographic assistance.
Supporting Information Available: Full experimental details. This
References
(1) Laplaza, C. E.; Cummins, C. C. Science 1995, 268, 861-863.
(2) Laplaza, C. E.; Johnson, M. J. A.; Peters, J. C.; Odom, A. L.; Kim, E.;
Cummins, C. C.; George, G. N.; Pickering, I. J. J. Am. Chem. Soc. 1996,
118, 8623-8638.
(3) Mindiola, D. J.; Meyer, K.; Cherry, J. P. F.; Baker, T. A.; Cummins, C.
Figure 1. The molecular structure of 6-Ph is shown with thermal ellipsoids
at the 50% probability level.
C. Organometallics 2000, 19, 1622-1624.
(4) Figueroa, J. S.; Piro, N. A.; Clough, C. R.; Cummins, C. C. J. Am. Chem.
Soc. 2006, 128, 940-950.
(5) Solari, E.; Da Silva, C.; Iacono, B.; Hesschenbrouck, J.; Rizzoli, C.;
Scopelliti, R.; Floriani, C. Angew. Chem., Int. Ed. Engl. 2001, 40, 3907-
3909.
observed over a spectral width of 0-1000 ppm corresponding to
PhC15N (260 ppm).21 It is noteworthy that ZnCl2 and SnCl2
efficiently form PhCN and a single molybdenum-containing product
from 6-Ph when other Lewis acids do not behave similarly.
Tolerance to the d2 molybdenum center may be essential to avoid
redox reactions; Zn(II) and Sn(II) salts are non-oxidizing Lewis
acids.31,32 Interestingly, ZnI2 and Zn(OTf)2 both failed to react with
6-Ph, possibly implying that formation of a strong Mo-Cl bond is
important to obtain favorable thermodynamics for nitrile loss. We
favor a mechanism in which the Lewis acid binds to the trimeth-
ylsiloxy oxygen to form an intermediate that undergoes subsequent
unimolecular fragmentation. This may occur via a six-membered
transition state in which chloride bridges between Zn or Sn and
Mo. Such a mechanism is analogous to the Lewis-acid induced
decomposition of organic hydroximines to nitriles.33 The reactions
between 6-Ph and ZnCl2 or SnCl2 differ in the required stoichi-
ometry. In the presence of 0.58 equiv SnCl2 6-Ph is completely
consumed, whereas in the presence of 0.60 equiv ZnCl2 only 60%
of 6-Ph is consumed. This observation implies that the Zn- and
Sn-containing byproducts (possibly [ZnCl(OSiMe3)(THF)]2 34 and
Sn(OSiMe3)2 35) are expected to have different empirical formulas.
Reactions between 3 and aliphatic acid chlorides did not produce
reasonable yields of corresponding acylimido species. However,
treatment of a mixture of 2 and t-BuC(O)Cl with [Me3Si(py)][OTf]
affords [t-BuC(O)NMo(N[t-Bu]Ar)3][OTf] (4-t-Bu, 64%).36,37 Treat-
ment of 4-t-Bu with magnesium anthracene followed by Me3SiOTf
affords t-Bu(Me3SiO)CNMo(N[t-Bu]Ar)3 (6-t-Bu, 46%). Treatment
of blue 6-t-Bu with SnCl2 cleanly produces both 7 (88%) and
t-BuCN (99%). Similarly, ZnCl2 and 6-t-Bu react to yield 7 and
t-BuCN (99%).
(6) Zanotti-Gerosa, A.; Solari, E.; Giannini, L.; Floriani, C.; Chiesi-Villa, A.;
Rizzoli, C. J. Am. Chem. Soc. 1998, 120, 437-438.
(7) Caselli, A.; Solari, E.; Scopelliti, R.; Floriani, C.; Re, N.; Rizzoli, C.;
Chiesi-Villa, A. J. Am. Chem. Soc. 2000, 122, 3652-3670.
(8) Kawaguchi, H.; Matsuo, T. Angew. Chem., Int. Ed. Engl. 2002, 41, 2792-
2794.
(9) Clentsmith, G. K. B.; Bates, V. M. E.; Hitchcock, P. B.; Cloke, F. G. N.
J. Am. Chem. Soc. 1999, 121, 10444-10445.
(10) Clough, C. R.; Greco, J. B.; Figueroa, J. S.; Diaconescu, P. L.; Davis, W.
M.; Cummins, C. C. J. Am. Chem. Soc. 2004, 126, 7742-7743.
(11) Peters, J. C.; Cherry, J. P. F.; Thomas, J. C.; Baraldo, L.; Mindiola, D. J.;
Davis, W. M.; Cummins, C. C. J. Am. Chem. Soc. 1999, 121, 10053-
10067.
(12) Tsai, Y. C.; Cummins, C. C. Inorg. Chim. Acta 2003, 345, 63-69.
(13) Sceats, E. L.; Figueroa, J. S.; Cummins, C. C.; Loening, N. M.; Van der
Wel, P.; Griffin, R. G. Polyhedron 2004, 23, 2751-2768.
(14) Henderickx, H.; Kwakkenbos, G.; Peters, A.; van der Spoel, J.; de Vries,
K. Chem. Commun. 2003, 2050-2051.
(15) Mendiratta, A.; Cummins, C. C.; Kryatova, O. P.; Rybak-Akimova, E.
V.; McDonough, J. E.; Hoff, C. D. Inorg. Chem. 2003, 42, 8621-8623.
(16) Mendiratta, A.; Cummins, C. C.; Kryatova, O. P.; Rybak-Akimova, E.
V.; McDonough, J. E.; Hoff, C. D. J. Am. Chem. Soc. 2006, 128, 4881-
4891.
(17) Fu¨rstner, A.; Mathes, C.; Lehmann, C. W. J. Am. Chem. Soc. 1999, 121,
9453-9454.
(18) Zhang, W.; Kraft, S.; Moore, J. S. Chem. Commun. 2003, 832-833.
(19) Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66, 7945-7950.
(20) Demko, Z. P.; Sharpless, K. B. Org. Lett. 2002, 4, 2525-2527.
(21) Chisholm, M. H.; Delbridge, E. E.; Kidwell, A. R.; Quinlan, K. B. Chem.
Commun. 2003, 126-127.
(22) Hubbard, J. L. Tetrahedron Lett. 1988, 29, 3197-3200.
(23) Soderquist, J. A.; Rivera, I. Tetrahedron Lett. 1988, 29, 3195-3196.
(24) For more information on dinitrogen cleavage as catalyzed by KH or [Na]-
[HBEt3] see refs 11-13.
(25) Dilman, A. D.; Ioffe, S. L. Chem. ReV. 2003, 103, 733-772.
(26) Fleming, I.; Barbero, A.; Walter, D. Chem. ReV. 1997, 97, 2063-2192.
Use of the Lewis acid/Lewis base combination of Me3SiOTf and
pyridine turned out to be ineffective for synthesizing [MeC(O)-
NMo(N[t-Bu]Ar)3][OTf] (4-Me). To obtain 4-Me we adopted a new
acylation strategy, adding MeC(O)Cl to a mixture of (i-Pr)3SiOTf
and 2.25-27 This procedure is possible because (i-Pr)3SiOTf itself
(27) Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. A. J. Org.
Chem. 1998, 63, 2342-2347.
(28) Mendiratta, A.; Cummins, C. C.; Kryatova, O. P.; Rybak-Akimova, E.
V.; McDonough, J. E.; Hoff, C. D. J. Am. Chem. Soc. 2006, 128, 4881-
4891.
(29) Chisholm, M. H.; Cotton, F. A.; Extine, M. W. Inorg. Chem. 1978, 17,
1329-1332.
1
does not react with 2 (as assessed by H NMR), and the isolated
(30) Find an independent synthesis of 7 from 1 and SnCl2 in the Supporting
yield of 4-Me (92%) attests to the utility of this procedure.
Treatment of 4-Me with magnesium anthracence followed by the
addition of Me3SiOTf yields violet Me(Me3SiO)CNMo(N[t-Bu]-
Ar)3 (6-Me, 83%). Treatment of 6-Me with SnCl2 cleanly produces
both 7 (71%) and MeCN (99%). Similarly, treatment of 6-Me with
ZnCl2 yields 7 and MeCN (99%).
Information.
(31) Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry; University
Science Books: Mill Valley, CA, 1995; p 257.
(32) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Oxford:
Boston, MA, 1997; p 379-381, 1215-1217.
(33) Patai, S. Chemistry of the Carbon-Nitrogen Double Bond; Wiley: New
York, 1970; p 363-455.
The only molybdenum-containing product generated by the
reactions of 4 with either SnCl2 or ZnCl2, 7, is conveniently reduced
by Mg0 to 1 (74%). In this manner the precursor to 2 is regenerated,
completing a synthetic cycle that progresses through three different
nitrogen-containing triple bonds: 0.5 NtN f NtMo f NtCR.
(34) Driess, M.; Merz, K.; Rell, S. Eur. J. Inorg. Chem. 2000, 2517-2522.
(35) Tatlock, W. S.; Rochow, E. G. J. Org. Chem. 1952, 17, 1555-1563.
(36) Anders, E.; Stankowiak, A.; Riemer, R. Synthesis 1987, 931-934.
(37) Anders, E.; Hertlein, K.; Meske, H. Synthesis 1990, 323-326.
JA066090A
9
J. AM. CHEM. SOC. VOL. 128, NO. 43, 2006 14037