larvicidal properties12 and cytotoxicity toward a range of cell
lines.13 Although polyynes are commonly found in nature,
obtaining them pure and in significant quantities is often difficult
due to their kinetic instability, particularly in the case of terminal
polyynes and longer derivatives such as triynes, tetraynes, and
pentaynes.14
Polyyne natural products featuring an alcohol moiety are
frequently encountered, and these molecules also offer the
possibility of derivatization through reaction at oxygen. Over
the years, a number of metal-catalyzed hetero- and homocou-
pling reactions have been developed for the formation of
polyynols, and the most commonly used method is the Cadiot-
Chodkiewicz cross-coupling.15-17 For example, compound 1 has
been synthesized by Pre´vost et al.,18 using the cross-coupling
of diyne 2 with bromoalkyne 3 (eq 1). However, the requisite
starting material 2 and others like it are often difficult to obtain
pure and in good yield.19 Because of these challenges, a
carbenoid Fritsch-Buttenberg-Wiechell (FBW) rearrangement
has been developed as an alternative method for the formation
of biologically interesting polyynes.20-24
Synthesis and Stability of a Homologous Series of
Triynol Natural Products and Their Analogues
Thanh Luu and Rik R. Tykwinski*
Department of Chemistry, UniVersity of Alberta, Edmonton,
Alberta T6G 2G2, Canada
ReceiVed July 31, 2006
A series of polyyne natural products 1, 13, and 31 and
analogues 14, 21, and 22 are synthesized in six steps. The
key step is a Fritsch-Buttenberg-Wiechell rearrangement
in which a triyne framework is formed from the appropriate
dibromoolefin precursor. Terminal conjugated triynes 13 and
14 are obtained as highly unstable products that rapidly
decompose under ambient conditions. The stability of triynols
increases via either the addition of methylene units (i.e., 6
f 31 f 1) or addition of terminal substituents (i.e., 13 f
21 or 31).
Toward the development of new polyynes and their deriva-
tives, we report herein on the formation and chemical stability
of conjugated triynols as a function of structure. Using the FBW
Naturally occurring polyynes (also called polyacetylenes)
have been isolated from a wide variety of plants, fungi, bacteria,
and sponges.1-6 They have proven to be important biologically
active compounds that can be used as antibacterial,7,8 antimi-
crobial,9,10 antifungal, and antiviral agents;11 they also exhibit
(12) Arnason, J. T.; Philoge`ne, B. J. R.; Berg, C.; MacEachern, A.;
Kaminski, J.; Leitch, L. C.; Morand, P.; Lam, J. Phytochemistry 1986, 25,
1609-1611.
(13) Ito, A.; Cui, B.; Cha´vez, D.; Chai, H.-B.; Shin, Y. G.; Kawanishi,
K.; Kardono, L. B. S.; Riswan, S.; Farnsworth, N. R.; Cordell, G. A.;
Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 2001, 64, 246-248.
(14) For recent examples of syntheses, see: (a) Mukai, C.; Miyakoshi,
N.; Hanaoka, M. J. Org. Chem. 2001, 66, 5875-5880. (b) Lo´pez, S.;
Ferna´ndez-Trillo, F.; Mido´n, P.; Castedo, L.; Saa´, C. J. Org. Chem. 2005,
70, 6346-6352. (c) Gung, B. W.; Kumi, G. J. Org. Chem. 2004, 69, 3488-
3492. (d) Kim, S.; Kim, S.; Lee, T.; Ko, H.; Kim, D. Org. Lett. 2004, 6,
3601-3604.
* To whom correspondence should be addressed. Fax: (780) 492-8231.
(1) Shi Shun, A. L. K.; Tykwinski, R. R. Angew. Chem., Int. Ed. 2006,
45, 1034-1057.
(2) Chemistry and Biology of Naturally Occurring Acetylenes and Related
Compounds (NOARC); Lam, J., Breteler, H., Arnason, T., Hansen, L., Eds.;
Elsevier: New York, 1988.
(3) Bohlmann, F.; Burkhardt, H.; Zdero, C. Naturally Occurring
Acetylenes; Academic Press: New York, 1973.
(4) Jones, E. R. H.; Thaller, V. The Chemistry of the Carbon-Carbon
Triple Bond; Patai, S., Ed.; John Wiley & Sons: New York, 1978; Part 2,
Chapter 14.
(5) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep,
M. R. Nat. Prod. Rep. 2003, 20, 1-48.
(6) Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1-49.
(7) Tsuge, N.; Mori, T.; Hamano, T.; Tanaka, H.; Shin-ya, K.; Seto, H.
J. Antibiot. 1999, 52, 578-581.
(8) Young, K.; Jayasuriya, H.; Ondeyka, J. G.; Herath, K.; Zhang, C.;
Kodali, S.; Galgoci, A.; Painter, R.; Brown-Driver, V.; Yamamoto, R.;
Silver, L. L.; Zheng, Y.; Ventura, J. I.; Sigmund, J.; Ha, S.; Basilio, A.;
Vicente, F.; Tormo, J. R.; Pelaez, F.; Youngman, P.; Cully, D.; Barrett, J.
F.; Schmatz, D.; Singh, S. B.; Wang, J. Antimicrob. Agents 2006, 50, 519-
526.
(15) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int.
Ed. 2000, 39, 2633-2657.
(16) Sonogashira, K. Handbook of Organopalladium Chemistry for
Organic Synthesis; Negishi, E., Ed.; Wiley-VCH: New York, 2002; pp
493-529.
(17) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere,
A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004.
(18) Pre´vost, S.; Meier, J.; Chodkiewicz, W.; Cadiot, P.; Villemart, A.
Bull. Soc. Chim. Fr. 1961, 2171-2175.
(19) Brandsma, L. PreparatiVe Acetylenic Chemistry, 2nd ed.; Elsevier:
Amsterdam, 1988; pp. 46-47.
(20) Shi Shun, A. L. K.; Tykwinski, R. R. J. Org. Chem. 2003, 68, 6810-
6813.
(21) Eisler, S.; Chahal, N.; McDonald, R.; Tykwinski, R. R. Chem. Eur.
J. 2003, 9, 2542-2550.
(9) Kobaisy, M.; Abramowski, Z.; Lermer, L.; Saxena, G.; Hancock, R.
E. W.; Towers, G. H. N.; Doxsee, D.; Stokes, R. W. J. Nat. Prod. 1997,
60, 1210-1213.
(22) Shi, Shun, A. L. K.; Chernick, E. T.; Eisler, S.; Tykwinski, R. R.
J. Org. Chem. 2003, 68, 1339-1347.
(10) Fusetani, N.; Toyoda, T.; Asai, N.; Matsunaga, S.; Maruyama, T.
J. Nat. Prod. 1996, 59, 796-797.
(23) Luu, T.; Shi, W.; Lowary, T. L.; Tykwinski, R. R. Synthesis 2005,
3167-3178.
(11) Rashid, M. A.; Gustafson, K. R.; Cardellina, J. H.; Boyd, M. R.
Nat. Prod. Lett. 2001, 15, 21-26.
(24) Morisaki, Y.; Luu, T.; Tykwinski, R. R. Org. Lett. 2006, 8, 689-
692.
10.1021/jo061588g CCC: $33.50 © 2006 American Chemical Society
Published on Web 10/13/2006
8982
J. Org. Chem. 2006, 71, 8982-8985