1476
C. A. Wheaton et al. · Complexes of Gold(I) with a Chiral Diphosphine Ligand
˚
solvation were restrained to have C–Cl = 1.65 A, and phenyl grams [18]. A total of 40.4 electrons were removed from
3
˚
groups were restrained to be ideal hexagons.
a volume of 159.7 A (2.1 % of the unit cell). These elec-
trons are assigned to 0.96 molecules of dichloromethane. The
SQUEEZE-processed date were used for all subsequent re-
finement cycles.
meso-[Au2(µ-R-binap)(µ-S-binap)](CF3CO2)2, 4a
Crystals of 4a were grown by slow diffusion of n-hexane
into a concentrated dichloromethane solution of the com-
pound 4. The asymmetric unit contains two similar but in-
dependent macrocyclic structures. Two of the four trifluo-
roacetate anions were disordered in which the -CO2 group
was modeled over two sites, one at 50 : 50 and the other at
60 : 40 occupancy. All atoms of the macrocycles were mod-
eled anisotropically with the exception of C144. Several an-
ion and solvent atoms were also not modeled anisotropi-
cally, including O304, O401, C404, F405, and C700. A sin-
gle small void in the lattice was assumed to be filled with
disordered dichloromethane solvent, and was accounted for
using the SQUEEZE procedure of the PLATON suite of pro-
[Au2Ag2(µ-O2CCF3)4(µ-R,S-binap)], 5
Crystals of [Au2Ag2(µ-O2CCF3)4(µ-R,S-binap)]·1.5-
CH2Cl2 were grown from a concentrated dichloromethane
chloride solution of 2 containing excess silver trifluoroac-
etate by slow diffusion of pentane. The C–Cl and Cl–Cl dis-
tances of the CH2Cl2 molecules were fixed.
Acknowledgement
We thank the NSERC (Canada) for financial support and
for a scholarship to C. A. W.
[1] a) A. Laguna (Ed.), Modern Supramolecular Gold
Chemistry. Gold-Metal Interactions and Applications,
Wiley-VCH, Weinheim, 2008; b) F. Mohr (Ed.), Gold
Chemistry: Applications and Future Directions in the
Life Sciences, Wiley, Chichester, 2009; c) G. J. Hutch-
ings, M. Brust, H. Schmidbaur, Chem. Soc. Rev.
2008, 1759; d) H. Schmidbaur (Ed.), Gold: Progress
in Chemistry, Biochemistry and Technology, Wiley,
Chichester, 1999.
[2] a) R. A. Widenhoefer, Chem. Eur. J. 2008, 14, 5382;
b) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev.
2008, 108, 3351; c) A. S. K. Hashmi, Chem. Rev. 2007,
107, 3180.
4601; f) W. Xu, J. P. Rourke, J. J. Vittal, R. J. Pudde-
phatt, J. Chem. Soc., Chem. Comm. 1993, 145.
[8] a) M. J. Irwin, J. J. Vittal, G. P. A. Yap, R. J. Pud-
dephatt, J. Am. Chem. Soc. 1996, 118, 13101;
b) G. C. Jia, N. C. Payne, J. J. Vittal, R. J. Puddephatt,
Organometallics 1993, 12, 4771; c) G. C. Jia, R. J.
Puddephatt, J. J. Vittal, N. C. Payne, Organometallics
1993, 12, 263; d) M. C. Brandys, R. J. Puddephatt, J.
Am. Chem. Soc. 2001, 123, 4839; e) T. J. Burchell,
D. J. Eisler, R. J. Puddephatt, Chem. Commun. 2004,
944.
[9] a) H. Schmidbaur, A. Schier, Chem. Soc. Rev. 2008,
1931; b) P. Pyykko¨, Chem. Soc. Rev. 2008, 1967.
[10] a) O. Schuster, U. Monkowius, H. Schmidbaur, R. S.
Ray, S. Kru¨ger, N. Ro¨sch, Organometallics 2006, 25,
1004; b) B. Djordjevic, O. Schuster, H. Schmidbaur,
Inorg. Chem. 2005, 44, 673.
[11] a) S.-Y. Yu, Z.-X. Zhang, E. C.-C. Cheng, Y.-Z. Li,
V. W.-W. Yam, H.-P. Huang, R. Zhang, J. Am. Chem.
Soc. 2005, 127, 17994; b) J. H. K. Yip, R. Feng, J. J.
Vittal, Inorg. Chem. 1999, 38, 3586; c) A. Bauer,
H. Schmidbaur, J. Am. Chem. Soc. 1996, 118, 5324;
d) M. Stender, R. L. White-Morris, M. M. Olmstead,
A. L. Balch, Inorg. Chem. 2003, 42, 4504; e) O. Elb-
jeirami, S. Yockel, C. F. Campana, A. K. Wilson, M. A.
Omary, Organometallics 2007, 26, 2550; f) O. Elb-
jeirami, M. A. Omary, J. Am. Chem. Soc. 2007, 129,
11384.
[3] M. P. Munoz, J. Adrio, J. C. Carretero, A. M. Echavar-
ran, Organometallics 2005, 24, 1293.
[4] a) Y. Yanagimoto, Y. Negishi, H. Fujihara, T. Tsukuda,
J. Phys. Chem. B 2006, 110, 11611; b) M. Tamura, H.
Fujihara, J. Am. Chem. Soc. 2003, 125, 15742.
[5] a) C. A. Wheaton, R. J. Puddephatt, Angew. Chem.
2007, 119, 4545; Angew. Chem., Int. Ed. 2007, 46,
4461; b) C. A. Wheaton, D. J. Eisler, M. C. Jennings,
R. J. Puddephatt, J. Am. Chem. Soc. 2006, 126, 15370.
[6] R. Noyori, Angew. Chem. 2002, 114, 2108; Angew.
Chem. Int. Ed. 2002, 41, 2008.
[7] a) C. P. McArdle, M. J. Irwin, M. C. Jennings, R. J.
Puddephatt, Angew. Chem. 1999, 111, 3571; Angew.
Chem. Int. Ed. 1999, 38, 3376; b) C. P. McArdle,
S. Van, M. C. Jennings, R. J. Puddephatt, J. Am. Chem.
Soc. 2002, 124, 3959; c) C. P. McArdle, J. J. Vittal, R.
J. Puddephatt, Angew. Chem. 2000, 112, 3977; Angew.
Chem. Int. Ed. 2000, 39, 3819; d) N. C. Habermehl,
D. J. Eisler, C. W. Kirby, N. L.-S. Yue, R. J. Puddephatt,
Organometallics 2006, 25, 2921; e) M. C. Brandys,
M. C. Jennings, R. J. Puddephatt, Dalton Trans. 2000,
[12] Y. Sun, B. Ross, R.-Y. Wang, S. Wang, Can. J. Chem.
2009, 87, 188.
[13] a) V. J. Catalano, M. A. Malwitz, A. O. Etogo, In-
org. Chem. 2004, 43, 5714; b) V. J. Catalano, A. O.
Etogo, J. Organomet. Chem. 2004, 690, 6041; c) E. J.
Fernandez, P. G. Jones, A. Laguna, J. M. Lopez-de-
- 10.1515/znb-2009-11-1230
Downloaded from De Gruyter Online at 09/12/2016 05:33:06AM
via free access