Journal of the American Chemical Society
Page 4 of 6
(12) Li, Z.; Capretto, D. A.; Rahaman, R.; He, C. Silver-Catalyzed In-
termolecular Amination of C–H Groups. Angew. Chem. Int. Ed. 2007,
46, 5184-5186.
ACKNOWLEDGMENT
1
2
3
4
5
6
7
8
Financial support by the Deutsche Forschungsgemeinschaft
(grant Ba 1372/17-2) is gratefully acknowledged. ARR thanks
the Alexander von Humboldt foundation for a research fellow-
ship. Dr. S. Breitenlechner is acknowledged for his help with
the KIE measurements.
(13) Reviews: (a) Zheng, Q.-Z.; Jiao, N. Ag-catalyzed C–H/C–C bond
functionalization. Chem. Soc. Rev. 2016, 45, 4590-4627. (b) Alderson,
J. M.; Corbin, J. R.; Schomaker, J. M. Tunable, Chemo- and Site-Selec-
tive Nitrene Transfer Reactions through the Rational Design of Sil-
ver(I) Catalysts. Acc. Chem. Res. 2017, 50, 2147-2158. (c) Dehghany, M.;
Eshon, J.; Roberts, J. M.; Schomaker, J. M. Silver-Catalyzed Carbene,
Nitrene, and Silylene Transfer Reactions. In Silver Catalysis in Organic
Synthesis, 1st ed.; Wiley-VC, Weinheim: 2019; pp 439-532.
REFERENCES
(1) (a) Lawrence, S. A. Amines: Synthesis, Properties and Applica-
tions, Cambridge University Press, Cambridge: 2004. (b) Nugent, T.
C. (Ed.) Chiral Amine Synthesis: Methods, Developments and Applica-
tions, Wiley-VCH, Weinheim: 2010.
(2) For a comprehensive review, see: Park, Y.; Kim, Y.; Chang, S.
Transition Metal-Catalyzed C–H Amination: Scope, Mechanism, and
Applications. Chem. Rev. 2017, 117, 9247-9301.
(3) Reviews with a focus on catalytic enantioselective amination re-
actions: (a) Hayashi, H.; Uchida, T. Nitrene Transfer Reactions for
Asymmetric C–H Amination: Recent Development. Eur. J. Org. Chem.
2020, 909-916. (b) Collet, F.; Lescot, C.; Dauban, P. Catalytic C–H ami-
nation: the stereoselectivity issue. Chem. Soc. Rev. 2011, 40, 1926-1936.
(4) (a) Müller, P.; Baud, C.; Jacquier, Y.; Moran, M.; Nägeli, I. Rho-
dium(II)-catalyzed aziridinations and CH insertions with [N-(p-nitro-
benzenesulfonyl)imino]phenyliodinane. J. Phys. Org. Chem. 1996, 9,
341-347. (b) Yamawaki, M.; Tsutsui, H.; Kitagaki, S.; Anada, M.; Hash-
imoto, S. Dirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leu-
cinate]: a new chiral Rh(II) catalyst for enantioselective amidation of
C–H bonds. Tetrahedron Lett. 2002, 43, 9561-9564. (c) Höke, T.;
Herdtweck, E.; Bach, T. Hydrogen-bond mediated regio- and enanti-
oselectivity in a C-H amination reaction catalysed by a supramolecu-
lar Rh(II) complex. Chem. Commun. 2013, 49, 8009-8011.
(5) Reddy, R. P.; Davies, H. M. L. Dirhodium Tetracarboxylates De-
rived from Adamantylglycine as Chiral Catalysts for Enantioselective
C−H Aminations. Org. Lett. 2006, 8, 5013-5016.
(6) (a) Nasrallah, A.; Boquet, V.; Hecker, A.; Retailleau, P.; Darses,
B.; Dauban, P. Catalytic Enantioselective Intermolecular Benzylic
C(sp3)−H Amination. Angew. Chem. Int. Ed. 2019, 58, 8192-8196. (b)
Nasrallah, A.; Lazib, Y.; Boquet, V.; Darses, B.; Dauban, P. Catalytic
Intermolecular C(sp3)–H Amination with Sulfamates for the Asym-
metric Synthesis of Amines. Org. Process Res. Dev. in press. DOI:
10.1021/acs.oprd.9b00424.
(7) (a) Fukagawa, S.; Kato, Y.; Tanaka, R.; Kojima, M.; Yoshino, T.;
Matsunaga, S. Enantioselective C(sp3)–H Amidation of Thioamides
Catalyzed by a CobaltIII/Chiral Carboxylic Acid Hybrid System. Angew.
Chem. Int. Ed. 2019, 58, 1153-1157. (b) Fukagawa, S.; Kojima, M.;
Yoshino, T.; Matsunaga, S. Catalytic Enantioselective Methylene
C(sp3)−H Amidation of 8-Alkylquinolines Using a Cp*RhIII/Chiral
Carboxylic Acid System. Angew. Chem. Int. Ed. 2019, 58, 18154-18158.
(8) For a recent report on an enzyme-based iron porphyrin catalyst,
see: Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmann-Chen, S.; Ar-
nold, F. H. Enantioselective, intermolecular benzylic C–H amination
catalysed by an engineered iron-haem enzyme. Nat. Chem. 2017, 9,
629-634.
9
(14) (a) Rigoli, J. W.; Weatherly, C. D.; Alderson, J. M.; Vo, B. T.;
Schomaker, J. M. Tunable, Chemoselective Amination via Silver Ca-
talysis. J. Am. Chem. Soc. 2013, 135, 17238-17241. (b) Dolan, N. S.; Scamp,
R. J.; Yang, T.; Berry, J. F.; Schomaker, J. M. Catalyst-Controlled and
Tunable, Chemoselective Silver-Catalyzed Intermolecular Nitrene
Transfer: Experimental and Computational Studies. J. Am. Chem. Soc.
2016, 138, 14658-14667. (c) Weatherly, C.; Alderson, J. M.; Berry, J. F.;
Hein, J. E.; Schomaker, J. M. Catalyst-Controlled Nitrene Transfer by
Tuning Metal:Ligand Ratios: Insight into the Mechanisms of
Chemoselectivity. Organometallics 2017, 36, 1649-1661. (d) Huang, M.;
Corbin, J. R.; Dolan, N. S.; Fry, C. G.; Vinokur, A. I.; Guzei, I. A.; Scho-
maker, J. M. Synthesis, Characterization, and Variable-Temperature
NMR Studies of Silver(I) Complexes for Selective Nitrene Transfer. In-
org. Chem. 2017, 56, 6725-6733. (e) Huang, M.; Yang, T.; Paretsky, J. D.;
Berry, J. F.; Schomaker, J. M. Inverting Steric Effects: Using “Attrac-
tive” Noncovalent Interactions to Direct Silver-Catalyzed Nitrene
Transfer. J. Am. Chem. Soc. 2017, 139, 17376-17386. (f) Ju, M.; Huang,
M.; Vine, L. E.; Dehghany, M.; Roberts, J. M.; Schomaker, J. M. Tunable
catalyst-controlled syntheses of β- and γ-amino alcohols enabled by
silver-catalysed nitrene transfer. Nat. Catal. 2019, 2, 899-908.
(15) (a) Gómez-Emeterio, B. P.; Urbano, J.; Díaz-Requejo, M. M.;
Pérez, P. J. Easy Alkane Catalytic Functionalization. Organometallics
2008, 27, 4126-4130. (b) Maestre, L.; Sameera, W. M. C.; Díaz-Requejo,
M. M.; Maseras, F.; Pérez, P. J. A General Mechanism for the Copper-
and Silver-Catalyzed Olefin Aziridination Reactions: Concomitant In-
volvement of the Singlet and Triplet Pathways. J. Am. Chem. Soc. 2013,
135, 1338-1348. (c) Maestre, L.; Dorel, R.; Pablo, Ó.; Escofet, I.; Sameera,
W. M. C.; Álvarez, E.; Maseras, F.; Díaz-Requejo, M. M.; Echavarren,
A. M.; Pérez, P. J. Functional-Group-Tolerant, Silver-Catalyzed N–N
Bond Formation by Nitrene Transfer to Amines. J. Am. Chem. Soc.
2017, 139, 2216-2223.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(16) Ju, M.; Weatherly, C. D.; Guzei, I. A.; Schomaker, J. M. Chemo-
and Enantioselective Intramolecular Silver-Catalyzed Aziridinations.
Angew. Chem. Int. Ed. 2017, 56, 9944-9948.
(17) Fackler, P.; Berthold, C.; Voss, F.; Bach, T. Hydrogen-Bond-Me-
diated Enantio- and Regioselectivity in a Ru-Catalyzed Epoxidation
Reaction. J. Am. Chem. Soc. 2010, 132, 15911-15913.
(18) For a recent perspective, see: Burg, F.; Bach, T. Lactam
Hydrogen Bonds as Control Elements in Enantioselective Transition-
Metal-Catalyzed and Photochemical Reactions. J. Org. Chem. 2019, 84,
8815-8836.
(19) Kan, T.; Fukuyama, T. Ns strategies: a highly versatile synthetic
method for amines. Chem. Commun. 2004, 353-359.
(20) Amans, D.; Atkinson, S. J.; Harrison, L. A.; Hirst, D. J.; Law, R.
P.; Lindon, M.; Preston, A.; Seal, J. T.; Wellaway, C. R. 2,3-Disubsti-
tuted 1-Acyl-4-Amino-1,2,3,4-Tetrahydroquinoline Derivatives and
Their Use as Bromodomain Inhibitors. PCT int. Appl. WO 2014140076
Al, September 18, 2014. (b) Cui, J. J.; Li, Y.; Rogers, E. W.; Zhai, D.;
Deng, W.; Ung, J. Chiral Diaryl Macrocycles as Modulators of Protein
Kinases. PCT int. Appl. WO 2017004342 Al, January 5, 2017. (c) Zhang,
X.; Macielag, M. J. Pyridin-2-one Derivatives of Formula (III) Useful as
EP3 Receptor Antagonists. US 20190047961 Al, February 14, 2019.
(21) (a) Gómez-Gallego, M.; Sierra, M. A. Kinetic Isotope Effects in
the Study of Organometallic Reaction Mechanisms. Chem. Rev. 2011,
111, 4857-4963. (b) Simmons, E. M.; Hartwig, J. F. On the Interpretation
of Deuterium Kinetic Isotope Effects in C–H Bond Functionalizations
by Transition-Metal Complexes. Angew. Chem. Int. Ed. 2012, 51, 3066-
3072.
(9) (a) Zhou, X.-G.; Yu, X.-Q.; Huang, J.-S.; Che, C.-M. Asymmetric
amidation of saturated C–H bonds catalysed by chiral ruthenium and
manganese porphyrins. Chem. Commun. 1999, 2377-2378. (b) Liang,
J.-L.; Huang, J.-S.; Yu, X.-Q.; Zhu, N.; Che, C.-M. Metalloporphyrin-
Mediated Asymmetric Nitrogen-Atom Transfer to Hydrocarbons:
Aziridination of Alkenes and Amidation of Saturated C−H Bonds Cat-
alyzed by Chiral Ruthenium and Manganese Porphyrins. Chem. - Eur.
J. 2002, 8, 1563-1572.
(10) (a) Kohmura, Y.; Katsuki, T. Mn(salen)-catalyzed enantioselec-
tive C–H amination. Tetrahedron Lett. 2001, 42, 3339-3342. (b) Nish-
ioka, Y.; Uchida, T.; Katsuki, T. Enantio- and Regioselective Intermo-
lecular Benzylic and Allylic C–H Bond Amination. Angew. Chem. Int.
Ed. 2013, 52, 1739-1742.
(11) Clark, J. S.; Roche, C. Tuneable asymmetric copper-catalysed
allylic amination and oxidation reactions. Chem. Commun. 2005, 5175-
5177.
ACS Paragon Plus Environment