Paper
NJC
11 J. A. Deyrup and C. L. Moyer, J. Org. Chem., 1969, 34, 175.
12 G. H. Posner and D. Z. Rogers, J. Am. Chem. Soc., 1977,
99, 8208.
13 (a) L. E. Overman and L. A. Flippin, Tetrahedron Lett., 1981,
22, 195; (b) A. Papini, I. Riuci, M. Taddei, G. Weconi and
P. Dembach, J. Chem. Soc., Perkin Trans. 1, 1984, 2261;
(c) M. C. Carre, J. P. Houmounou and P. Caubeae, Tetra-
hedron Lett., 1985, 26, 3107.
free microwave conditions. The nature of the catalytic reaction
shows the secondary effect of the nitrate group. The milder reaction
conditions, shorter reaction times, excellent regioselectivity,
reasonably higher yields, and applicability to aromatic, aliphatic
and heteroaromatic amines are the main advantages of the
protocol developed.
Acknowledgements
14 (a) S. Sagava, H. Abe, H. Hase and T. Inaba, J. Org. Chem.,
1999, 64, 4962; (b) S. Rampalli, S. S. Chaudhari and
K. G. Akamanchi, Synthesis, 2000, 78.
15 (a) J. Iqbal and A. Pandey, Tetrahedron Lett., 1990, 31, 575;
(b) S. Chendrashekhar, T. Ramchandar and S. J. Prakash,
Synthesis, 2000, 1817.
All the authors sincerely thank the Chancellor and all the
officials of GLA University for their moral, financial and infra-
structural support.
16 Y. L. Murthy, B. S. Diwakar, B. Govindh, R. Venu and
K. Nagalakshmi, Chem. Sci. Trans., 2013, 2, 805–812.
Notes and references
1 (a) D. R. Gehlert, D. J. Goldstein and P. A. Hipskind, Annu. 17 P. Lidstrom, J. Tierney, B. Wathey and J. Westman, Tetra-
Rep. Med. Chem., 1999, 201; (b) E. J. Corey and F. Zhang, hedron, 2001, 57, 9225.
Angew. Chem., Int. Ed., 1999, 38, 1931; (c) C. W. Johannes, 18 R. Gupta, S. Paul, A. K. Gupta, P. L. Kachroo and A. Dandia,
M. S. Visser, G. S. Weatherhead and A. H. Hoveyda, J. Am.
Chem. Soc., 1998, 120, 8340; (d) B. L. Chang and A. Ganesan,
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 1997,
36B, 281.
Bioorg. Med. Chem. Lett., 1997, 7, 1511; (e) G. A. Rogers, 19 M. R. Saidi, M. M. Mojtahedi and M. Bolourtchian, J. Chem.
S. M. Parson, D. S. Anderson, L. M. Nilson, B. A. Bahr, Res., 1999, 2, 128.
W. D. Kornreich, R. Kaufman, R. S. Jacobs and B. Kirtman, 20 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem.,
J. Med. Chem., 1989, 32, 1217; ( f ) J. De Cree, H. Geukens, Int. Ed., 2001, 40, 2004.
J. Leempoles and H. Verhaegen, Drug Dev. Res., 1986, 8, 109. 21 T. Ollevier and G. Lavie-Campin, Tetrahedron Lett., 2002,
2 (a) P. O’Brien, Angew. Chem., Int. Ed., 1999, 38, 326; (b) G. Li, 43, 7891.
H.-T. Chang and K. B. Sharpless, Angew. Chem., Int. Ed., 22 D. Bandyopadhyay, R. S. Fonseca and B. K. Banik, Hetero-
1996, 35, 451. cycl. Lett., 2011, 1(spl.issue), 75–77.
3 (a) M. Castellano and M. Bohm, Hypertension, 1997, 29, 23 D. Bandyopadhyay, S. Maldonado and B. K. Banik, Hetero-
715–722; (b) S. Yamada, T. Ohukara, S. Uchida, K. Inabe, cycl. Lett., 2011, 1(spl.issue), 13–16.
Y. Iwatani, R. Kimura, T. Hoshino and T. Kaburagi, Life Sci., 24 H. Aguilar, A. Reddy and B. K. Banik, Heterocycl. Lett., 2011,
1996, 58, 1737–1744; (c) C. Auvin-Guette, S. Rebuffat, Y. Prigent
and B. Bodo, J. Am. Chem. Soc., 1992, 114, 2170–2174.
4 (a) D. M. Hodgson, A. R. Gibbs and G. P. Lee, Tetrahedron, 1996,
52, 14361; (b) S. C. Bergmeier, Tetrahedron, 2000, 56, 2561.
5 M. J. Bhanushali, N. S. Nandurkar, M. D. Bhor and B. M.
Bhanage, Tetrahedron Lett., 2008, 49, 3672–3676.
6 A. K. Chakraborti and A. Kondaskar, Tetrahedron Lett., 2003,
44, 8315.
7 A. T. Placzek, J. L. Donelson, R. Trivedi, R. A. Gibbs and
S. K. De, Tetrahedron Lett., 2005, 46, 9029–9034.
8 P. V. de Weghe and J. Collin, Tetrahedron Lett., 1995, 36,
1649–1652.
1(spl.issue), 95–96.
25 S. Samajdar, F. F. Becker and B. K. Banik, ARKIVOC, 2001, 8,
27–33.
26 H. Suzuki and Y. Matano, Organobismuthchemistry, Elesvier,
Amsterdam, 2001.
27 A. T. Placzek, J. L. Donelson, R. Trivedi, R. A Gibbs and
S. K. De, Tetrahedron Lett., 2005, 46, 9029–9034.
28 G. Copper and W. J. Irwin, J. Chem. Soc., Perkin Trans. 1,
1976, 545–549.
29 H. Kotsuki, K. Hayashida, T. Shimanouchi and H. Nishizawa,
J. Org. Chem., 1996, 61, 984–990.
30 Bi(NO3)3Á5H2O was heated in anhydrous DMF for 4 hours.
DMF was removed under vacuum until dryness, the residue
obtained was analysed with the help of FTIR to check the
replacement of the water molecule with the DMF molecule.
See the ESI†.
9 S. K. De and R. A. Gibbs, Synth. Commun., 2005, 35,
2675–2680.
10 M. G. Constantino, V. Lacerda Jr. and V. Aragao, Molecules,
2001, 6, 770–776.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017