columnar state is 7.7 6 1027 S cm21 at 120 uC. The anisotropy
(s||/sH) in the ion conductivities in the columnar state is ca. 10.
Above the Colh–Iso transition temperature, the anisotropy
disappears. This change indicates the formation of ion conduction
pathways in the columnar state.4 Previous reports indicated that 2
is a good proton donor17,18 whereas 1 could serve as a proton
acceptor,19 forming the protonated merocyanine isomer. Hence,
we suggest that the observed anisotropic ion conduction is due to
proton hopping20 in the phenolic moieties of the merocyanine
stacks in the columnar nanostructures.
in Electrochemical Aspects of Ionic Liquids, ed. H. Ohno, Wiley, New
Jersey, 2005, ch. 25, pp. 307–320.
5 T. Kato, T. Matsuoka, M. Nishii, Y. Kamikawa, K. Kanie,
T. Nishimura, E. Yashima and S. Ujiie, Angew. Chem., Int. Ed., 2004,
43, 1969; K. Kanie, M. Nishii, T. Yasuda, T. Taki, S. Ujiie and T. Kato,
J. Mater. Chem., 2001, 11, 2875; Y. Kamikawa, M. Nishii and T. Kato,
Chem.–Eur. J., 2004, 10, 5942; T. Hatano and T. Kato, Chem.
Commun., 2006, 1277.
6 C. S. Pecinovsky, G. D. Nicodemus and D. L. Gin, Chem. Mater., 2005,
17, 4889.
7 I. Cabrera and V. Krongauz, Nature, 1987, 326, 582; G. Berkovic,
V. Krongauz and V. Weiss, Chem. Rev., 2000, 100, 1741; N. Tamai and
H. Miyasaka, Chem. Rev., 2000, 100, 1875.
In summary, by manipulating the chemical responsiveness of a
spiropyran derivative in SP–MC isomerisation, we have succeeded
in developing a new hexagonal columnar mesogen. Furthermore,
the new liquid-crystalline material exhibits anisotropic ion
conductivities and, thus, could be developed as a novel stimuli-
responsive one-dimensional ion conductor.
8 X. Guo, D. Zhang, Y. Zhou and D. Zhu, J. Org. Chem., 2003, 68, 5681;
X. Guo, D. Zhang, G. Yu, M. Wan, J. Li, Y. Liu and D. Zhu, Adv.
Mater., 2004, 16, 636; K. Kimura, H. Sakamoto and R. M. Uda,
Macromolecules, 2004, 37, 1871; A. Y. Bobrovsky, N. I. Boiko and
V. P. Shibaev, Adv. Mater., 1999, 11, 1025; M. Inouye, K. Akamatsu
and H. Nakazumi, J. Am. Chem. Soc., 1997, 119, 9160.
9 H. Gong, C. Wang, M. Liu and M. Fan, J. Mater. Chem., 2001, 11,
3049; X. D. Sun, M. G. Fan, X. J. Meng and E. T. Knobbe,
J. Photochem. Photobiol., A, 1997, 102, 213.
10 O. Ikkala and G. ten Brinke, Chem. Commun., 2004, 2131;
J. Ruokolainen, J. Tanner, G. ten Brinke, M. Torkkeli, R. Serimaa
and O. Ikkala, Macromolecules, 1995, 28, 7779; T. Ruotsalainen,
M. Torkkeli, R. Serimaa, T. Ma¨kela¨, R. Ma¨ki-Ontto, J. Ruokolainen,
G. ten Brinke and O. Ikkala, Macromolecules, 2003, 36, 9437.
11 Non-volatile inorganic acids were not evaluated because the authors
aimed at designing thermotropic liquid-crystalline materials.
12 K. Araya and Y. Matsunaga, Bull. Chem. Soc. Jpn., 1980, 53, 3079;
K. Araya and Y. Matsunaga, Bull. Chem. Soc. Jpn., 1981, 54, 2430;
T. Kato and J. M. J. Fre´chet, Macromolecules, 1989, 22, 3818; T. Kato,
J. M. J. Fre´chet, P. G. Wilson, T. Saito, T. Uryu, A. Fujishima, C. Jin
and F. Kaneuchi, Chem. Mater., 1993, 5, 1094; H. Bengs, M. Ebert,
O. Karthaus, B. Kohne, K. Praefcke, H. Ringsdorf, J. H. Wendorff and
R. Wu¨stefeld, Adv. Mater., 1990, 2, 141.
This study was partially supported by a Grant-in-Aid for
Creative Scientific Research of ‘‘Invention of Conjugated
Electronic Structures and Novel Functions’’ (No. 16GS0209)
(TK) and a Grant-in-Aid for Scientific Research (B) (No.
17350065) (TK) from the Japan Society for the Promotion of
Science (JSPS) and a Grant-in-Aid for The 21st Century COE
Program for Frontiers in Fundamental Chemistry (TK) and
Scientific Research on Priority Areas of ‘‘Science of Ionic Liquids’’
(No. 18045010) (TK) from the Ministry of Education, Culture,
Sports, Science, and Technology.
Notes and references
1 For example: N. Boden and B. Movaghar, in Handbook of Liquid
Crystals, ed. D. Demus, J. W. Goodby, G. W. Gray, H.-W. Spiess and
V. Hill, Wiley-VCH, Weinheim, 1998, vol. 2B, ch. IX, pp. 781–798.
2 T. Kato, Science, 2002, 295, 2414; T. Kato, N. Mizoshita and
K. Kishimoto, Angew. Chem., Int. Ed., 2006, 45, 38; C. Tschierske,
J. Mater. Chem., 2001, 11, 2647; D. Guillon, Struct. Bonding, 1999, 95,
41; B. Donnio and D. W. Bruce, Struct. Bonding, 1999, 95, 193;
I. M. Saez and J. W. Goodby, J. Mater. Chem., 2005, 15, 26.
13 V. I. Minkin, Chem. Rev., 2004, 104, 2751.
14 C. Tschierske, J. Mater. Chem., 1998, 8, 1485.
15 F. M. Raymo, S. Giordani, A. J. P. White and D. J. Williams, J. Org.
Chem., 2003, 68, 4158; T. Kato, Struct. Bonding, 2000, 96, 95; T. Kato,
N. Mizoshita and K. Kanie, Macromol. Rapid Commun., 2001, 22, 797;
S. Sivakova and S. J. Rowan, Chem. Commun., 2003, 2428; J. Barbera´,
L. Puig, P. Romero, J. L. Serrano and T. Sierra, J. Am. Chem. Soc.,
2006, 128, 4487.
16 K. Binnemans, Chem. Rev., 2005, 105, 4148; S. Ujiie and K. Iimura,
Macromolecules, 1992, 25, 3174; C. J. Bowlas, D. W. Bruce and
K. R. Seddon, Chem. Commun., 1996, 1625; M. Yoshio, T. Mukai,
K. Kanie, M. Yoshizawa, H. Ohno and T. Kato, Chem. Lett., 2002, 31,
320; C. G. Bazuin, D. Guillon, A. Skoulios and J.-F. Nicoud, Liq.
Cryst., 1986, 1, 181.
17 R. Ma¨ki-Ontto, K. de Moel, E. Polushkin, G. Alberda van Ekenstein,
G. ten Brinke and O. Ikkala, Adv. Mater., 2002, 14, 357.
18 The water content of the recrystallised 4-methylbenzenesulfonic acid
monohydrate is ca. 13.1 wt% (equivalent to ca. 0.5 mole fraction), as
determined by thermogravimetric analysis. It is defined as the weight
loss from 50 to 190 uC.
3 I. O. Shklyarevskiy, P. Jonkheijm, N. Stutzmann, D. Wasserberg,
H. J. Wondergem, P. C. M. Christianen, A. P. H. J. Schenning, D. M. de
ˇ
´
Leeuw, Z. Tomovic, J. Wu, K. Mu¨llen and J. C. Maan, J. Am. Chem.
Soc., 2005, 127, 16233; N. Boden, R. J. Bushby and J. Clements,
J. Chem. Phys., 1993, 98, 5920; J. W. Goodby, G. H. Mehl, I. M. Saez,
R. P. Tuffin, G. Mackenzie, R. Auze´ly-Velty, T. Benvegnu and
D. Plusquellec, Chem. Commun., 1998, 2057; R. C. Smith, W. M. Fischer
and D. L. Gin, J. Am. Chem. Soc., 1997, 119, 4092; J. F. Hulvat and
S. I. Stupp, Angew. Chem., Int. Ed., 2003, 42, 778; V. Percec, M. Glodde,
T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K.
Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H.-W. Spiess,
S. D. Hudson and H. Duan, Nature, 2002, 419, 384; C. F. van Nostrum,
S. J. Picken, A.-J. Schouten and R. J. M. Nolte, J. Am. Chem. Soc.,
1995, 117, 9957; F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer and
A. P. H. J. Schenning, Chem. Rev., 2005, 105, 1491; T. Yasuda,
K. Kishimoto and T. Kato, Chem. Commun., 2006, 3399.
19 M. Kameda, K. Sumaru, T. Kanamori and T. Shinbo, Langmuir, 2004,
20, 9315.
20 M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla and
J. E. McGrath, Chem. Rev., 2004, 104, 4587; T. Mukai, M. Yoshio,
T. Kato, M. Yoshizawa-Fujita and H. Ohno, Electrochemistry (Tokyo,
Jpn.), 2005, 73, 623.
4 M. Yoshio, T. Mukai, H. Ohno and T. Kato, J. Am. Chem. Soc., 2004,
126, 994; M. Yoshio, T. Kagata, K. Hoshino, T. Mukai, H. Ohno and
T. Kato, J. Am. Chem. Soc., 2006, 128, 5570; T. Kato and M. Yoshio,
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 4703–4705 | 4705