Here, we describe the first enantioselective total synthesis
of (R)-γ-indomycinone (R-1), which also allowed us to
determine the stereochemistry of the natural compound. Its
retrosynthetic analysis is outlined in Scheme 1. The first
element directing the carbon-carbon bond formation during
the Diels-Alder reaction.10 The following regioselective
ortho-bromination of anthraquinone 9 was feasible due to
the strong ortho-directing effect of the hydroxyl group. Thus,
treatment of 9 with NBS in dichloromethane in the presence
of a catalytic amount of a secondary amine11 gave the
monobromoanthraquinone 10 in nearly quantitative yield. To
complete the synthesis of the building block 3 (Scheme 2),
Scheme 1. Retrosynthetic Analysis of (R)-γ-Indomycinone
(R-1)
Scheme 2. Synthesis of the Building Block 3
disconnection in the pyrone ring moiety envisions an intra-
molecular 6-endo-dig cyclization of the chiral ynone 2, which
in turn should result from a nucleophilic attack of an aryl
lithium species generated from the bromodimethoxyanthra-
cene derivative 3 on the enantiopure propargylic aldehyde
4. Compound 3 should be accessible from the two fragments
5 and 6 employing a Diels-Alder reaction, and the aldehyde
4 could be obtained from the enantiopure dioxolanone 7.
Recently, we have shown that anthraquinones can be
obtained in an operationally simple way via a regioselective
Diels-Alder reaction,7 which is highly advantageous com-
pared to the known procedure. Thus, cycloaddition of
3-bromojuglone benzyl ether 58 as a dienophile and 1-meth-
oxy-3-methyl-1-trimethylsiloxy-1,3-butadiene 69 as a diene
led to adduct 8, which without isolation yielded the anthra-
quinone 9 by treatment with silica gel as a mild acid in 94%.
The bromo atom at C-3 in 5 acts as a regiochemical control
both the hydroxyl group and the quinone moiety had to be
protected. Following an orthogonal protecting-group strategy,
the hydroxyl group of bromoanthraquinone 10 was protected
as its isopropyl ether 11 in 90% yield by treatment with i-PrI
and Cs2CO3 in a mixture of acetone and N,N-dimethylfor-
mamide.12 Finally, reductive methylation of the quinone
moiety in 11 using the phase-transfer method13 with aq
sodium dithionite followed by treatment with KOH and
dimethyl sulfate led to the desired dimethoxyanthracene 3
in 90% overall yield. 3 is sensitive to light in the presence
of air. Under these conditions, a partial formation of the
corresponding anthraquinone takes place. The building block
3 has the advantage, over the already used corresponding
building block with two isopropyl ether moieties as protecting
groups,7 that deprotection as one of the last steps does not
cause any problems.
(6) (a) Hauser, F. M.; Rhee, R. P. J. Am. Chem. Soc. 1979, 101, 1628-
1629. (b) Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1980, 45, 3061-3068.
(c) Uno, H.; Sakamoto, K.; Honda, E.; Ono, N. Chem. Commun. 1999,
1005-1006. (d) Uno, H.; Sakamoto, K.; Honda, E.; Fukuhara, K.; Ono,
N.; Tanaka, J.; Sakanaka, M. J. Chem. Soc., Perkin Trans. 1 2001, 229-
238. (e) Krohn, K.; Vitz, J. Eur. J. Org. Chem. 2004, 209-219. (f) Fei, Z.;
McDonald, F. E. Org. Lett. 2005, 7, 3617-3620.
(7) Tietze, L. F.; Gericke, K. M.; Singidi, R. R. J. Angew. Chem. 2006,
118, 7146-7150; Angew. Chem., Int. Ed. 2006, 45, 6990-6993.
(8) (a) Takeya, T.; Kajiyama, M.; Nakumara, C.; Tobinaga, S. Chem.
Pharm. Bull. 1999, 47, 209-219. (b) Wheeler, A. S; Naiman, B. J. Am.
Chem. Soc. 1922, 44, 2331-2334. (c) Thomson, R. H. J. Org. Chem. 1948,
13, 377-383. (d) Hannan, R. L.; Barber, R. B.; Rapoport, H. J. Org. Chem.
1979, 44, 2153-2158. (e) Tietze, L. F.; Gu¨ntner, C.; Gericke, K. M.;
Schuberth, I.; Bunkoczi, G. Eur. J. Org. Chem. 2005, 2459-2467.
(9) Savard, J.; Brassard, P. Tetrahedron 1984, 40, 3455-3464.
(10) Grunwell, J. R.; Karipides, A.; Wigal, C. T.; Heinzman, S. W.;
Parlow, J.; Surso, J. A.; Clayton, L.; Fleitz, F. J.; Daffner, M.; Stevens, J.
E. J. Org. Chem. 1991, 56, 91-95.
(11) (a) Fujisaki, S.; Eguchi, H.; Omura, A.; Okamoto, A.; Nishida, A.
Bull. Chem. Soc. Jpn. 1993, 66, 1576-1579. (b) Krohn, K.; Bernhard, S.;
Floerke, U.; Hayat, N. J. Org. Chem. 2000, 65, 3218-3222. (c) Nicolaou,
K. C.; Gray, D.; Tae, J. Angew. Chem. 2001, 113, 3791-3795; Angew.
Chem., Int. Ed. 2001, 40, 3679-3683. (d) Bringmann, G.; Menche, D.;
Kraus, J.; Mu¨hlbacher, J.; Peters, K.; Peters, E.-M.; Brun, R.; Bezabih, M.;
Abegaz, B. M. J. Org. Chem. 2002, 67, 5595-5610.
(12) Winters, R. T.; Sercel, A. D.; Showalter, H. D. Synthesis 1988, 712-
714.
(13) Allevi, P.; Anastasia, M.; Bingham, S.; Ciuffreda, P.; Pierangela,
A. J. Chem. Soc., Perkin Trans. 1 1998, 3, 575 -582.
5874
Org. Lett., Vol. 8, No. 25, 2006