Staudinger Ligation of Peptides at Non-Glycyl Residues
SCHEME 1. Putative Mechanism for the Traceless
Staudinger Ligation Mediated by
(Diphenylphosphino)methanethiol
(Diphenylphosphino)methanethiol (HSCH2PPh2) is the most
efficacious of known reagents for effecting the traceless
Staudinger ligation.17 This reagent has been used in the
orthogonal assembly of a protein,18 site-specific immobilization
of peptides and proteins to a surface,19,20 and synthesis of
glycopeptides.21 The reaction is rapid, displaying t1/2 ) 7 min
for the coupling of AcGlySCH2PPh2 and 2-azido-N-benzylac-
etamide (175 mM each) in a wet organic solvent.17 This value
is limited by the encounter of the reactants to form the initial
phosphazide intermediate. Another phosphine, o-(diphenylphos-
phino)benzoic acid, has been used to mediate the non-traceless
Staudinger ligation for biomolecular labeling experiments in
vitro22 and in vivo,23,24 and drug delivery.25 This reaction leaves
a phosphine oxide in the ligation product, making it inappropri-
ate for synthetic applications.
The putative mechanism for the traceless Staudinger ligation
appears to be indifferent to amino acid substitution at the ligation
sites (Scheme 1). Yet, as with auxiliary-mediated ligations,11,12
all reported traceless Staudinger ligations of peptides that
proceed with a high (>90%) yield have had a glycine residue
at the ligation junction.26 Reactions of more encumbered residues
proceed with a lower (<50%) yield.17,27 Likewise, yields for
the synthesis of glycopeptides are diminished by steric strain.21
Somehow, steric effects are being manifested during the
reaction.
reveal the native amide bond. Efforts with extant auxiliaries
have, however, revealed a requirement for a glycine residue to
be present at the ligation junction.11,12 Although these methods
are not yet sequence-independent, they do represent an advance
beyond native chemical ligation, as glycine is among the most
common amino acids in proteins (7.2% of all residues).7
An elegant new strategy for peptide coupling entails the
decarboxylative condensation of R-ketoacids and N-alkylhy-
droxylamines.13 This reaction suffers, however, from the ac-
cumulation of numerous intermediates, leading to low overall
rates. Modifications to the reactants or reaction conditions that
overcome this intrinsic deficiency are not apparent. Moreover,
many of the R-ketoacids that correspond to the proteinogenic
amino acids are not readily accessible.
The traceless Staudinger ligation was designed to overcome
such limitations and provide a general means to synthesize
proteins from component peptides (Scheme 1).14,15 In this
reaction, a peptide with a C-terminal phosphinothioester (1)
is coupled with a second peptide having an N-terminal azido
acid (2) through the intermediacy of an iminophosphorane (3).
The iminophosphorane can form a tetrahedral intermediate
(4), which collapses to give an amidophosphonium salt (5)
that is hydrolyzed in aqueous solution. The final ligation prod-
uct is a peptide (6) without either residual atoms14,15 or
racemization.16 In nonaqueous solvents, amidophosphonium
salt 5 can fragment to form peptide 6 and a thiaphosphiranium
salt.17
(17) Soellner, M. B.; Nilsson, B. L.; Raines, R. T. J. Am. Chem. Soc.
2006, 128, 8820-8828.
(18) Nilsson, B. L.; Hondal, R. J.; Soellner, M. B.; Raines, R. T. J. Am.
Chem. Soc. 2003, 125, 5268-5269.
(19) Soellner, M. B.; Dickson, K. A.; Nilsson, B. L.; Raines, R. T. J.
Am. Chem. Soc. 2003, 125, 11790-11791.
(20) Gauchet, C.; Labadie, G. R.; Poulter, C. D. J. Am. Chem. Soc. 2006,
128, 9274-9275.
(21) For examples, see: (a) He, Y.; Hinklin, R. J.; Chang, J. Y.; Kiessling,
L. L. Org. Lett. 2004, 6, 4479-4482. (b) Bianchi, A.; Bernardi, A.
Tetrahedron Lett. 2004, 45, 2231-2234. (c) Bianchi, A.; Russo, A.;
Bernardi, A. Tetrahedron: Asymmetry 2005, 16, 381-386. (d) Liu, L.;
Hong, Z.-Y.; Wong, C.-H. ChemBioChem 2006, 2006, 429-432.
(22) For examples, see: (a) Saxon, E.; Bertozzi, C. R. Science 2000,
287, 2007-2010. (b) Saxon, E.; Luchansky, S. J.; Hang, H. C.; Yu, C.;
Lee, S. C.; Bertozzi, C. R. J. Am. Chem. Soc. 2002, 124, 14893-14902.
(c) Kiick, K. L.; Saxon, E.; Tirrell, D. A.; Bertozzi, C. R. Proc. Natl. Acad.
Sci. U.S.A. 2002, 99, 19-24. (d) Ovaa, H.; van Swieten, P. F.; Kessler, B.
M.; Leeuwenburgh, M. A.; Fiebiger, E.; van den Nieuwendijk, A. M. C.
H.; Galardy, P. J.; van der Marel, G. A.; Ploegh, H. L.; Overkleeft, H. S.
Angew. Chem., Int. Ed. 2003, 42, 3626-3629. (e) Wang, C. C.-Y.; Seo, T.
S.; Li, Z.; Ruparel, H.; Ju, J. Bioconjugate Chem. 2003, 14, 697-701. (f)
Restituyo, J. A.; Comstock, L. R.; Petersen, S. G.; Stringfellow, T.; Rajski,
S. R. Org. Lett. 2003, 5, 4357-4360. (g) Vocadlo, D. J.; Hang, H. C.;
Kim, E.-J.; Hanover, J. A.; Bertozzi, C. R. Proc. Natl. Acad. Sci. U.S.A.
2003, 100, 9116-9121. (h) Hang, H. C.; Yu, C.; Kato, D. L.; Bertozzi, C.
R. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 14846-14851. (i) Luchansky,
S. J.; Argade, S.; Hayes, B. K.; Bertozzi, C. R. Biochemistry 2004, 43,
12358-12366. (j) Hang, H. C.; Yu, C.; Pratt, M. R.; Bertozzi, C. R. J. Am.
Chem. Soc. 2004, 126, 6-7. (k) Hosoya, T.; Hiramatsu, T.; Ikemoto, T.;
Nakanishi, M.; Aoyama, H.; Hosoya, A.; Iwata, T.; Maruyama, K.; Endo,
M.; Suzuki, M. Org. Biomol. Chem. 2004, 2, 637-641. (l) Kho, Y.; Kim,
S. C.; Jiang, C.; Barma, D.; Kwon, S. W.; Cheng, J.; Jaunbergs, J.;
Weinbaum, C.; Tamanoi, F.; Falck, J.; Zhao, Y. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 12479-12484. (m) Tsao, M.-L.; Tian, F.; Schultz, P. G. Chem
BioChem 2005, 6, 2147-2149. (n) Sprung, R.; Nandi, A.; Chen, Y.; Kim,
S. C.; Barma, D.; Falck, J. R.; Zhao, Y. J. Proteome Res. 2005, 4, 950-
957. (o) Comstock, L. R.; Rajski, S. R. Nucleic Acids Res. 2005, 33, 1644-
1652. (p) Rose, M. W.; Xu, J.; Kale, T. A.; O’Doherty, G.; Barany, G.;
Distefano, M. D. Pept. Sci. 2005, 80, 164-171. (q) Xu, J.; DeGraw, A. J.;
Duckworth, B. P.; Lenevich, S.; Tann, C.-M.; Jenson, E. C.; Gruber, S. J.;
Barany, G.; Distefano, M. D. Chem. Biol. Drug Des. 2006, 68, 85-96.
(23) Prescher, J. A.; Dube, D. H.; Bertozzi, C. R. Nature 2004, 430,
873-877.
(11) Offer, J.; Boddy, C. N. C.; Dawson, P. E. J. Am. Chem. Soc. 2002,
124, 4642-4646.
(12) Marinzi, C.; Bark, S. J.; Offer, J.; Dawson, P. E. Bioorg. Med. Chem.
2001, 9, 2323-2328.
(13) Bode, J. W.; Fox, R. M.; Baucom, K. D. Angew. Chem., Int. Ed.
2006, 45, 1248-1252.
(14) Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2001, 3,
9-12.
(15) Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2000, 2,
1939-1941.
(24) Dube, D. H.; Prescher, J. A.; Quang, C. N.; Bertozzi, C. R. Proc.
Natl. Acad. Sci. U.S.A. 2006, 103, 4819-4824.
(25) Azoulay, M.; Tuffin, G.; Sallem, W.; Florent, J.-C. Bioorg. Med.
Chem. Lett. 2006, 16, 3147-3149.
(16) Soellner, M. B.; Nilsson, B. L.; Raines, R. T. J. Org. Chem. 2002,
67, 4993-4996.
J. Org. Chem, Vol. 71, No. 26, 2006 9825