10.1002/anie.202008113
Angewandte Chemie International Edition
RESEARCH ARTICLE
[4]
a) X. Yan, H. Wang, C. E. Hauke, T. R. Cook, M. Wang, M. L. Saha, Z.
Zhou, M. Zhang, X. Li, F. Huang, P. J. Stang, J. Am. Chem. Soc. 2015,
137, 15276-15286; b) X. Yan, T. R. Cook, P. Wang, F. Huang, P. J.
Stang, Nat. Chem. 2015, 7, 342-348; c) G. Yu, T. R. Cook, Y. Li, X. Yan,
D. Wu, L. Shao, J. Shen, G. Tang, F. Huang, X. Chen, P. J. Stang, Proc.
Natl. Acad. Sci. 2016, 113, 13720-13725; d) X. Yan, M. Wang, T. R.
Cook, M. Zhang, M. L. Saha, Z. Zhou, X. Li, F. Huang, P. J. Stang, J.
Am. Chem. Soc. 2016, 138, 4580-4588; e) M. Zhang, M. L. Saha, M.
Wang, Z. Zhou, B. Song, C. Lu, X. Yan, X. Li, F. Huang, S. Yin, P. J.
Stang, J. Am. Chem. Soc. 2017, 139, 5067-5074; f) C. Lu, M. Zhang, D.
Tang, X. Yan, Z. Y. Zhang, Z. Zhou, B. Song, H. Wang, X. Li, S. Yin, H.
Sepehrpour, P. J. Stang, J. Am. Chem. Soc. 2018, 140, 7674-7680. g)
G.-Q. Yin, H. Wang, X.-Q. Wang, B. Song, L.-J. Chen, L. Wang, X.-Q.
Hao, H.-B. Yang, X. Li, Nat. Commun. 2018, 9, 567-577.
a) N. B. Shustova, B. D. McCarthy, M. Dinca, J. Am. Chem. Soc. 2011,
133, 20126-20129; b) N. B. Shustova, T. C. Ong, A. F. Cozzolino, V. K.
Michaelis, R. G. Griffin, M. Dinca, J. Am. Chem. Soc. 2012, 134, 15061-
15070.
a) L. Ascherl, T. Sick, J. T. Margraf, S. H. Lapidus, M. Calik, C.
Hettstedt, K. Karaghiosoff, M. Döblinger, T. Clark, K. W. Chapman, F.
Auras, T. Bein, Nat. Chem. 2016, 8, 310-316; b) S.-Y. Jiang, S.-X. Gan,
X. Zhang, H. Li, Q.-Y. Qi, F.-Z. Cui, J. Lu, X. Zhao, J. Am. Chem. Soc.
2019, 141, 14981-14986.
J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X.
Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740-1741.
a) Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40,
5361–5388; b) Y. Liu, C. Deng, L. Tang, A. Qin, R. Hu, J. Z. Sun, B. Z.
Tang, J. Am. Chem. Soc. 2011, 133, 660-663; c) J. Mei, Y. Hong, J. W.
Y. Lam, A. J. Qin, Y. Tang, B. Z. Tang, Adv. Mater. 2014, 26, 5429-
5479; d) H. Q. Peng, X. Zheng, T. Han, R. T. K. Kwok, J. W. Y. Lam, X.
Huang, B. Z. Tang, J. Am. Chem. Soc. 2017, 139, 10150-10156; e) S.
Wang, F. Hu, Y. Pan, L. G. Ng, B. Liu, Adv. Funct. Mater. 2019, 29,
1902717-1902728; f) G. Qi, F. Hu, Kenry, L. Shi, M. Wu, B. Liu, Angew.
Chem. Int. Ed. 2019, 58, 16229-16235; g) K. C. Chong, F. Hu, B. Liu,
Mater. Chem. Front. 2019, 3, 12-24; h) S. Xu, Y. Duan, B. Liu, Adv.
Mater. 2020, 32, 1903530-1903561.
a) J. Wang, J. Mei, R. Hu, J. Z. Sun, A. Qin, B. Z. Tang, J. Am. Chem.
Soc. 2012, 134, 9956-9966; b) J. Liang, H. Shi, R. T. K. Kwok, M. Gao,
Y. Yuan, W. Zhang, B. Z. Tang, B. Liu, J. Mater. Chem. B. 2014, 2,
4363-4370; c) C.-J. Zhang, G. Feng, S. Xu, Z. Zhu, X. Lu, J. Wu, B. Liu,
Angew. Chem. Int. Ed. 2016, 55, 6192 –6196; d) X. Fang, Y.-M. Zhang,
K. Chang, Z. Liu, X. Su, H. Chen, S. X.-A. Zhang, Y. Liu, C. Wu, Chem.
Mater. 2016, 28, 6628-6636.
may be prepared via tuning the donor and acceptor units, and
they might be useful for living animal imaging.[4c,23]
Conclusion
In conclusion, we have prepared a tetraborylethylene (TBE)
and demonstrated its application in the synthesis of [4+0]-
tetraarylethylenes via quadruple Suzuki-Miyaura couplings. The
stereoselective synthesis of [3+1]-, [2+2]-, and [2+1+1]-
tetraarylethylenes from the corresponding vinylboronates and
aryl halides were also established, which provides
a
[5]
[6]
synthetically useful tool for the preparation of novel TAE-based
functional molecules. This protocol enabled the efficient
preparation of pure E- and Z-[2+2]-TAEs, which represents an
important complement to the existing methods that require multi-
step synthesis or have separation issues. The synthetic utilities
were illustrated by the construction of TPE-core crown ether and
the application of heteroaromatic TAEs in coordination-driven
self-assembly. Further applications based on this new
tetraborylethylene and the synthesis of new functional molecules
and materials via this unprecedented multi-coupling are now
under investigation in our lab.
[7]
[8]
Acknowledgements
We thank Prof. Xiaopeng Li (University of South Florida), Dr.
Shuai Lu and Zhixuan Zhou for the ESI-TOF-MS measurements
and analysis. Prof. Shengyi Dong and Zebing Zeng are thanked
for helpful discussion. Financial support from the National
Natural Science Foundtion of China (Grant No. 21702056,
21971059), the National Program for Thousand Young Talents
of China and the Fundamental Research Funds for the Central
Universities are greatly appreciated.
[9]
[10] a) J. E. McMurry, Acc. Chem. Res. 1983, 16, 405–411; b) J. E.
McMURRY, Chem. Rev. 1989, 89, 1513-1524; c) X.-F. Duan, J. Zeng,
J.-W. Lu, Z.-B. Zhang, J. Org. Chem. 2006, 71, 9873-9876; d) X.-F.
Duan, J. Zeng, J.-W. Lü, Z.-B. Zhang, Synthesis. 2007, 5, 713-718.
[11] a) R. Rathore, C. L. Burns, S. A. Abdelwahed, Org.Lett. 2004, 6, 1689–
1692; b) M. Banerjee, S. J. Emond, S. V. Lindeman, R. Rathore, J. Org.
Chem. 2007, 72, 8054-8061.
Conflict of interest
The authors declare no competing financial interests.
[12] a) G.-F. Zhang, H. Wang, M. P. Aldred, T. Chen, Z.-Q. Chen, X. Meng,
M.-Q. Zhu, Chem. Mater. 2014, 26, 4433-4446; b) Z.-Q. Chen, T. Chen,
J. X. Liu, G.-F. Zhang, C. Li, W. L. Gong, Z.-J. Xiong, N.-H. Xie, B. Z.
Tang, M.-Q. Zhu, Macromolecules 2015, 48, 7823−7835.
Keywords: aggregation-induced emission • tetraarylethylenes •
fluorophores • boron • vinylboronates
[13] a) C. Zhou, R. C. Larock, J. Org. Chem. 2005, 70, 3765-3777; b) F. Xue,
J. Zhao, T. S. Hor, T. Hayashi, J. Am. Chem. Soc. 2015, 137, 3189-
3192; c) E. E. Lin, J.-Q. Wu, F. Schäfers, X.-X. Su, K.-F. Wang, J.-L. Li,
Y. Chen, X. Zhao, H. Ti, Q. Li, T.-M. Ou, F. Glorius, H. Wang, Commun.
Chem. 2019, 2, 34-43.
[14] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483; b) R. Jana,
T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417-1492; c) F.-S.
Han, Chem. Soc. Rev. 2013, 42, 5270--5298.
[1]
a) D. Ding, K. Li, B. Liu, B. Z. Tang, Acc. Chem. Res. 2013, 46, 2441–
2453; b) R. Hu, N. L. Leung, B. Z. Tang, Chem. Soc. Rev. 2014, 43,
4494-4562; c) J. Mei, N. L. Leung, R. T. Kwok, J. W. Y. Lam, B. Z. Tang,
Chem. Rev. 2015, 115, 11718-11940; d) J. Liang, B. Z. Tang, B. Liu,
Chem. Soc. Rev. 2015, 44, 2798-2811; e) R. T. K. Kwok, C. W. T.
Leung, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2015, 44, 4228-
4238; f) J. Li, J. Wang, H. Li, N. Song, D. Wang, B. Z. Tang, Chem. Soc.
Rev. 2020, 49, 1144-1172; g) C. W. T. Leung, Y. Hong, S. Chen, E.
Zhao, J. W. Y. Lam, B. Z. Tang, J. Am. Chem. Soc. 2013, 135, 62-65;
h) S. Chen, Y. Hong, Y. Liu, J. Liu, C. W. T. Leung, M. Li, R. T. K. Kwok,
E. Zhao, J. W. Y. Lam, Y. Yu, B. Z. Tang, J. Am. Chem. Soc. 2013, 135,
4926-4929.
a) T. S. Navale, K. Thakur, R. Rathore, Org. Lett. 2011, 13, 1634-1637;
b) G. Tan, L. Zhu, X. Liao, Y. Lan, J. You, J. Am. Chem. Soc. 2017, 139,
15724-15737. c) C. W. T. Leung, Y. Hong, S. Chen, E. Zhao, J. W. Y.
Lam, B. Z. Tang, J. Am. Chem. Soc. 2013, 135, 62-65. d) X. Cai, D
Mao, C. Wang, D. Kong, X. Cheng, B. Liu, Angew. Chem. Int. Ed. 2018,
[15] E. Negishi, Z. H. Huang, G. W. Wang, S. Mohan, C. Wang, H. Hattori,
Acc. Chem. Res. 2008, 41, 1474− 1485.
[16] a) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F.
Hartwig, Chem. Rev. 2010, 110, 890−931; b) D. Hemming, R.
Fritzemeier, S. A. Westcott, W. L. Santos, P. G. Steel, Chem. Soc. Rev.
2018, 47, 7477-7494; c) S. Li, J. Li, T. Xia, W. Zhao, Chin. J. Chem.
2019, 37, 462-468.
[17] D. Hall, In Boronic Acids: Preparation and Applications in Organic
Synthesis and Medicine; Wiley-VCH: Weinheim, 2005.
[18] a) T. Ishiyama, N. Matsuda, N. Miyaura, A. Suzuki, J. Am.Chem. Soc.
1993, 115, 11018–11019; b) K. Hyodo, M. Suetsugu, Y. Nishihara, Org.
Lett. 2014, 16, 440−443
[2]
[3]
57, 16396-16400. e) S. Wang, F. Hu, Y. Pan, L. G. Ng, B. Liu, Adv.
Funct. Mater. 2019, 29, 1902717. f) X. Cai, B. Liu, Angew. Chem. Int.
Ed. 2020, 59, 9868-9886.
[19] A. Maderna, H. Pritzkow, W. Siebert, Angew. Chem. Int. Ed. 1996, 35,
1501-1503.
a) R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111,
6810-6918; b) T. R. Cook, Y. R. Zheng, P. J. Stang, Chem. Rev. 2013,
113, 734-777; c) M. L. Saha, X. Yan, P. J. Stang, Acc. Chem. Res.
2016, 49, 2527-2539; d) Y. Liu, C. S. Diercks, Y. Ma, H. Lyu, C. Zhu, S.
A. Alshmimri, S. Alshihri, O. M. Yaghi, J. Am. Chem. Soc. 2019, 141,
677-683; e) J. Jiao, Z. Li, Z. Qiao, X. Li, Y. Liu, J. Dong, J. Jiang, Y. Cui,
Nat. Commun. 2018, 9, 4423; f) N. B. Shustova, T. C. Ong, A. F.
Cozzolino, V. K. Michaelis, R. G. Griffin, M. Dinca, J. Am. Chem. Soc.
2012, 134, 15061-15070; g) Q. Zhang, J. Su, D. Feng, Z. Wei, X. Zou,
H. C. Zhou, J. Am. Chem. Soc. 2015, 137, 10064-10067; h) L.-J. Chen,
H.-B. Yang, M. Shionoya, Chem. Soc. Rev. 2017, 46, 2555-2576. i) L.
Xu, Y.-X. Wang, L.-J. Chen, H.-B. Yang, Chem. Soc. Rev. 2015, 44,
2148-2167.
[20] a) C. E. Tucker, J. Davidson, P. Knochel, J. Org. Chem. 1992, 57,
3482-3485; b) C. M. Crudden, Y. B. Hleba, A. C. Chen, J. Am. Chem.
Soc. 2004, 126, 9200-9201.
[21] Recently, Severin and coworkers demonstrated
a protocol for the
synthesis of [3+1]-tetraarylethenes from vinyl triazenes: A. A.
Suleymanov, M. Doll, A. Ruggi, R. Scopelliti, F. Fadaei-Tirani, K.
Severin, Angew. Chem. Int. Ed. 2020, 59, 9957-9961.
[22] C. I. Lee, W. C. Shih, J. Zhou, J. H. Reibenspies, O. V. Ozerov, Angew.
Chem. Int. Ed. 2015, 54, 14003-14007.
[23] a) L. Yuan, W. Lin, K. Zheng, L. He, W. Huang, Chem. Soc. Rev. 2013,
42, 622-661; b) C. Li, Q. Wang, ACS Nano 2018, 12, 9654-9659.
.
This article is protected by copyright. All rights reserved.