A R T I C L E S
Tahara et al.
Figure 1. Structures of (a) decadehydrotetrabenzo[12]annuleno[12]annulene (bisDBAs, 1a,b), (b) hexadehydrotribenzo[12]annulene (DBA, 2a-b and 3a-
f), and (c) triphenylene (4a,b) derivatives.
ecule-molecule interactions is crucial for the formation of
molecular networks: typically, discrete molecular building-
blocks are ‘connected’ to each other by virtue of directional
intermolecular interactions such as hydrogen bonding or metal
coordination. Being able to correlate molecular features such
as shape, position of interacting sites, as well as electronic
properties with the resulting topology of the molecular archi-
tectures would enable us to design and construct the network
structures and their functions. This strategy is already well-
known as “crystal engineering” in three-dimensional (3D) crystal
systems.6 Of special interest are 2D molecular porous net-
works.7,8
In 2D systems, the molecule-substrate interaction is an
important issue to regulate network topologies in terms of
symmetry matching of the molecules with the substrate. The
strength of the molecule-substrate interactions can be controlled
by adjusting the van der Waals interaction between molecules
and substrate. For example, the molecule-substrate interaction
on graphite linearly increases with the length of the alkyl
chains.9,10
hydrogen bonding, van der Waals interactions) between the
solvent and the other molecules.13 The solvent also affects the
mobility of the molecules14 at the liquid-solid interface, e.g.,
by affecting the adsorption-desorption dynamics. In this
dynamic process, the mobility of the molecules is affected by
the solvation energy (molecule-solvent interaction) and possibly
also by solvent viscosity.15 Hence, for a successful rational
construction of 2D molecular networks, an accurate molecular
design taking into account these four interactions is essential.
In this contribution, we systematically study the formation
of 2D molecular networks of dehydrobenzo[12]annulene (DBA)
derivatives on highly oriented pyrolytic graphite (HOPG). Our
strategy to form 2D regular networks is based on choosing rigid
π-electron-conjugated frameworks with long alkyl chains as
molecular building-blocks. In this respect, DBA derivatives are
good candidates because of their planar π-electron-conjugated
framework, unique molecular shape, suitable core size to
favor directional alkyl chain interdigitation, and core symmetry
which fits the graphite lattice (Figure 1).16 Furthermore, their
synthetic versatility allows chemical modification of their
periphery.17
At the liquid-solid interface, solvent molecules play a
significant role in the network formation and have therefore a
strong effect on the network structures. Sometimes solvent
molecules are coadsorbed in the molecular network (solvent-
substrate interaction).11 Coadsorption of solvent molecules
critically depends among other factors on the size and shape of
the solvent molecules12 as well as the mode of interaction (e.g.,
Instead of using hydrogen bonds,5,7,18 we focus on directional
alkyl chain interdigitation and tune the strength of molecule-
molecule and molecule-substrate interactions by stepwise
elongation of the alkyl chains. For that purpose, in addition to
the previously synthesized decyl-substituted rhombic-shaped
bisDBA 1a and triangular-shaped DBA 2a, a series of DBA
derivatives with alkoxy chains of variable length 3a-e were
synthesized (Figure 1).
(6) (a) Schmidt, G. M. J. Pure Appl. Chem. 1971, 27, 647-678. (b) Crystal
Engeering: The Design of Organic Solid; Desiraju, G. R., Ed.; Elsevier:
New York, 1989. (c) Desiraju, G. R. Angew. Chem., Int. Ed. Engl. 1995,
34, 2311-2327. (d) Blagden, N.; Davey, R. J. Cryst. Growth Des. 2003,
3, 873-885.
(7) (a) Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.;
Beton, P. H. Nature 2003, 424, 1029-1031. (b) Stepanow, S.; Lingenfelder,
M.; Dmitriev, A.; Spillmann, H.; Delvigne, E.; Lin, N.; Deng, X.; Cai, C.;
Barth, J. V.; Kern, K. Nature Mat. 2004, 3, 229-233. (c) Li, Z.; Han, B.;
Wan, L. J.; Wandlowski, Th. Langmuir 2005, 21, 6915-6928. (d) Ishikawa,
Y.; Ohira, A.; Sakata, M.; Hirayama, C.; Kunitake, M. Chem. Commun.
2002, 2652-2653. (e) Lu, J.; Lei, S. B.; Zeng, Q. D.; Kang, S. Z., Wang,
C.; Wan, L. J.; Bai, C. L. J. Phys. Chem. B 2004, 108, 5161-5165. (f)
Griessl, S. J. H.; Lackinger, M.; Jamitzky, F.; Markert, T.; Hietschold, M.;
Heckl, W. M. J. Phys. Chem. B 2004, 108, 11556-11560. (g) Griessl, S.
J. H.; Lackinger, M.; Jamitzky, F.; Markert, T.; Hietschold, M.; Heckl, W.
M. Langmuir 2004, 20, 9403-9407.
(8) (a) Liu, Y.; Lei, S.; Yin, S.; Xu, S.; Zheng, Q.; Zeng, Q.; Wang, C.; Wan,
L.; Bai, C. J. Phys. Chem. B 2002, 106, 12569-12574. (b) Gyarfas, B. J.;
Wiggins, B.; Zosel, M.; Hipps, K. W. Langmuir 2005, 21, 919-923. (c)
Jeong, K. S.; Kim, S. Y.; Shin, U. S.; Kogej, M; Hai, N. T. M.; Broekmann,
P.; Jeong, N; Kirchner, B.; Reiher, M.; Schalley, C. A. J. Am. Chem. Soc.
2005, 127, 17672-17685. (d) Schull, G.; Douillard, L.; Fiorini-Debuiss-
chert, C.; Charra, F.; Mathevet, F.; Kreher, D.; Attias, A.-J. Nano Lett.
2006, 6, 1360-1363.
(11) (a) Yablon, D. G.; Wintgens, D.; Flynn, G. W. J. Phys. Chem. B 2002,
106, 5470-5475. (b) Vanoppen, P.; Grim, P. C. M.; Ru¨cker, M.; De Feyter,
S.; Moessner, G.; Valiyaveettil, S.; Mu¨llen, K.; De Schryver, F. C. J. Phys.
Chem. 1996, 100, 19636-19641.
(12) Mamdouh, W.; Uji-i, H.; Ladislaw, J. S.; Dulcey, A. E.; Percec, V.; De
Schryver, F. C.; De Feyter, S. J. Am. Chem. Soc. 2006, 128, 317-325.
(13) Nath, K. G.; Ivasenko, O.; Miwa, J. A.; Dang, H.; Wuest, J. D. Nanci, A.;
Perepichka, D. F.; Rosei, F. J. Am. Chem. Soc. 2006, 128, 4212-4213.
(14) (a) Kim. K.; Plass, K. E.; Matzger, A. J. Langmuir 2003, 19, 7149-7152.
(b) Kim, K.; Plass, K. E.; Matzger, A. J. J. Am. Chem. Soc. 2005, 127,
4879-4887.
(15) (a) Venkataraman, B.; Breen, J. J.; Flynn, G. W. J. Phys. Chem. 1995, 99,
6608-6619. (b) Li, C.-J.; Zeng, Q.-D.; Wang, C.; Wan, L.-J.; Xu, S.-L.;
Wang, C.-R.; Bai, C.-L. J. Phys. Chem. B 2003, 107, 747-750. (c)
Lackinger, M.; Griessl, S.; Heckl, W. M.; Hietschold, M.; Flynn, G. W.
Langmuir 2005, 21, 4984-4988. (d) Kampschulte, L.; Lackinger, M.;
Maier, A.-K.; Kishore, R. S. K.; Griessl, S.; Schmittel, M.; Heckl, W. M.
J. Phys. Chem. B 2006, 110. 10829-10836. (e) Shao, X.; Luo, X.; Hu, X.;
Wu. K. J. Phys. Chem. B 2006, 110, 1288-1293.
(16) Furukawa, S.; Uji-i, H.; Tahara, K.; Ichikawa, T.; Sonoda, M.; De Schryver,
F. C.; Tobe, Y.; De Feyter, S. J. Am. Chem. Soc. 2006, 128, 3502-3503.
(17) Youngs, W. J.; Tessier, C. A.; Bradshaw, J. D. Chem. ReV. 1999, 99, 3153-
3180.
(9) (a) Smith, D. P. E.; Ho¨rber, H.; Gerber, C.; Binnig, G. Science 1989, 245,
43-45. (b) Smith, D. P. E.; Ho¨rber, J. K. H.; Binning, G.; Nejoh, H. Nature
1990, 344, 641-644. (c) Hara, M.; Iwakabe, Y.; Tochigi, K.; Sasabe, H.;
Garito, A. F.; Yamada, A. Nature 1990, 344, 228-230.
(10) (a) Paserba, K. R.; Gellman, A. J. J. Chem. Phys. 2001, 115, 6737-6751.
(b) Paserba, K. R.; Gellman, A. J. Phys. ReV. Lett. 2001, 86, 4338-4341.
(c) Mu¨ller, T.; Flynn, G. W.; Mathauser, A. T.; Teplyakov, A. V. Langmuir
2003, 19, 2812-2821.
(18) There are a number of papers about 2D molecular network through the
hydrogen bonding as connectivity. See, for example: (a) Griessl, S.;
Lackinger, M.; Edelwirth, M.; Hietschold, M.; Heckl, W. M. Single Mol.
2002, 3, 25-31. (b) Lei, S. B.; Wang, C.; Yin, S. X.; Wang, H. N.; Xi, F.;
Liu, H. W.; Xu, B.; Wan, L. J.; Bai, C. L. J. Phys. Chem. B 2001, 105,
10838-10841. (c) Otsuki, J.; Nagamine, E.; Kondo, T.; Iwasaki, K.;
Asakawa, M.; Miyake, K. J. Am. Chem. Soc. 2005, 127, 10400-10405.
9
16614 J. AM. CHEM. SOC. VOL. 128, NO. 51, 2006