ORGANIC
LETTERS
2007
Vol. 9, No. 1
69-72
Convenient Synthetic Approach to
2,4-Disubstituted Quinazolines
Serena Ferrini, Fabio Ponticelli, and Maurizio Taddei*
Dipartimento di Chimica and Dipartimento Farmaco Chimico Tecnologico,
UniVersita` degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
Received October 16, 2006
ABSTRACT
2,4-Dialkyl or aryl quinazolines have been prepared in three steps starting from easily available anilides. A photochemically induced Fries
rearrangement of the anilides gave several ortho-aminoacylbenzene derivatives that were acylated at the NH2. These acylamides underwent
rapid cyclization to 2,4-disubstituted quinazolines (and benzoquinazolines) in the presence of ammonium formate under microwave activation.
This procedure is compatible with different functional groups and allowed also the preparation of new quinazolines derived from naturally
occurring amino acids.
Quinazolines have recently been the object of deep inves-
tigation due to their different biological properties. This
heterocycle is present in powerful inhibitors of the epidermal
growth factor (EGF) receptors of tyrosine kinase1 and in
molecules that show remarkable activity as anticancer,2
antiviral,3 and antitubercular agents.4 Quinazolines have also
been employed as ligands for benzodiazepine and GABA
receptors in the CNS system5 or as DNA binders.6
This large interest in medicinal chemistry stimulated the
development of new and more efficient syntheses of this class
of compounds.7 The classical synthetic approach to quinazo-
lines (the Niementowski quinazoline reaction)8 involves the
formation of the intermediate 3(H)-4-quinazolinone (derived
from antranylic acid) followed by formation of 4-chloro-
quinazoline and subsequent nucleophilic aromatic substitution
(1) Klutchko, S. R.; Zhou, H.; Winters, R. T.; Tran, T. P.; Bridges, A.
J.; Althaus, I. W.; Amato, D. M.; Elliott, W. L.; Ellis, P. A.; Meade, M.
A.; Roberts, B. J.; Fry, D. W.; Gonzales, A. J.; Harvey, P. J.; Nelson, J.
M.; Sherwood, V.; Han, H.-K.; Pace, G.; Smaill, J. B.; Denny, W. A.;
Showalter, H. D. H. J. Med. Chem. 2006, 49, 1475 and references therein.
Jung, F. H.; Pasquet, G.; Lambert-van der Brempt, C.; Lohmann, J.-J. M.;
Warin, N.; Renaud, F.; Germain, H.; De Savi, C.; Roberts, N.; Johnson,
T.; Dousson, C.; Hill, G. B.; Mortlock, A. A.; Heron, N.; Wilkinson, R.
W.; Wedge, S. R.; Heaton, S. P.; Odedra, R.; Keen, N. J.; Green, S.; Brown,
E.; Thompson, K.; Brightwell, S. J. Med. Chem. 2006, 49, 955. Ple, P. A.;
Green, T. P.; Hennequin, L. F.; Curwen, J.; Fennell, M.; Allen, J.; Lambert-
van der Brempt, C.; Costello, G. J. Med. Chem. 2004, 47, 871. Hennequin,
L. F.; Stokes, E. S. E.; Thomas, A. P.; Johnstone, C.; Ple, P. A.; Ogilvie,
D. J.; Dukes, M.; Wedge, S. R.; Kendrew, J.; Curwen, J. O. J. Med. Chem.
2002, 45, 1300.
(2) Doyle, L. A.; Ross, D. D. Oncogene 2003, 22, 7340. Henderson, E.
A.; Bavetsias, V.; Theti, D. S.; Wilson, S. C.; Clauss, R.; Jackman, A. L.
Bioorg Med. Chem. 2006, 14, 5020. Baruah, B.; Dasu, K.; Vaitilingam, B.;
Mamnoor, P.; Venkata, P. P.; Rajagopal, S.; Yeleswarapu, K. R. Bioorg.
Med. Chem. 2004, 12, 1991. Sharma, V. M.; Prasanna, P.; Adi Seshu, K.
V.; Renuka, B.; Rao, C. V. L.; Kumar, G. S.; Narasimhulu, C. P.;
Rajagopalan, R. Bioorg. Med. Chem. Lett. 2002, 12, 2303.
(4) Waisser, K.; Gregor, J.; Dostal, H.; Kunes, J.; Kubicova, L.;
Klimesova, V.; Kaustova, J. Farmaco 2001, 56, 803. Kunes, J.; Bazant, J.;
Pour, M.; Waisser, K.; Slosarek, M.; Janota, J. Farmaco 2000, 55, 725.
(5) Colotta, V.; Catarzi, D.; Varano, F.; Lenzi, O.; Filacchioni, G.;
Costagli, C.; Galli, A.; Ghelardini, C.; Galeotti, N.; Gratteri, P.; Sgrignani,
J.; Deflorian, F.; Moro, S. J. Med. Chem. 2006, 49, 6015. Lewerenz, A.;
Hentschel, S.; Vissiennon, Z.; Michael, S.; Nieber, K. Drug DeV. Res. 2003,
58, 420.
(6) Malecki, N.; Carato, P.; Rigo, G.; Goossens, J. F.; Houssin, R.; Bailly,
C.; Henichart, J. P. Bioorg. Med. Chem. 2004, 12, 641.
(7) For the most recent synthetic approaches, see: Roy, A. D.; Subra-
manian, A.; Roy, R. J. Org. Chem. 2006, 71, 382. Yoo, C. L.; Fettinger, J.
C.; Kurth, M. J. J. Org. Chem. 2005, 70, 6941. Shreder, K. R.; Wong, M.
S.; Nomanbhoy, T.; Leventhal, P. S.; Fuller, S. R. Org. Lett. 2004, 6, 3715.
Wiklund, P.; Rogers-Evans, M.; Bergman, J. J. Org. Chem. 2004, 69, 6371.
Costa, M.; Ca, N. D.; Gabriele, B.; Massera, C.; Salerno, G.; Soliani, M. J.
Org. Chem. 2004, 69, 2469. For the most recent microwave-assisted
syntheses of quinazolines, see: Liu, J.-F.; Ye, P.; Zhang, B.; Bi, G.; Sargent,
K.; Yu, L.; Yohannes, D.; Baldino, C. M. J. Org. Chem. 2005, 70, 6339.
Yoon, D. S.; Han, Y.; Stark, T. M.; Haber, J. C.; Gregg, B. T.; Stankovich,
S. B. Org. Lett. 2004, 6, 4775.
(3) Chien, T.-C.; Chen, C.-S.; Yu, F.-H.; Chern, J.-W. Chem. Pharm.
Bull. 2004, 52, 1422. Herget, T.; Freitag, M.; Morbitzer, M.; Kupfer, R.;
Stamminger, T.; Marschall, M. Antimicrob. Agents Chemother. 2004, 48,
4154.
(8) Niementowski, S. v. J. Prakt. Chem. 1895, 51, 564.
10.1021/ol062540s CCC: $37.00
© 2007 American Chemical Society
Published on Web 12/07/2006