1436
Z. Zarei, B. Akhlaghinia/Chemical Papers 69 (11) 1421–1437 (2015)
4-chlorophenol. Bulletin of the Chemical Society of Ethiopia,
17, 27–34. DOI: 10.4314/bcse.v17i1.61726.
SiO2) as an eco-friendly catalyst for transamidation. RSC
Advances, 5, 10567–10574. DOI: 10.1039/c4ra16571c.
Razavi, N., & Akhlaghinia, B. (2015). Cu(II) immobilized
on aminated epichlorohydrin activated silica (CAES): as a
new, green and efficient nanocatalyst for preparation of 5-
substituted-1H-tetrazoles. RSC Advances, 5, 12372–12381.
DOI: 10.1039/c4ra15148h.
Ghodsinia, S. S. E., Akhlaghinia, B., Safaei, E., & Eshghi, H.
(2013). Green and selective synthesis of N-substitued amides
using water soluble porphyrazinato copper(II) catalyst. Jour-
nal of the Brazilian Chemical Society, 24, 895–903. DOI:
10.5935/0103-5053.20130115.
Ghosh, S. C., Li, C. C., Zeng, H. C., Ngiam, J. S. Y., Seayad, A.
M., & Chen, A. Q. (2014). Mesoporous niobium oxide spheres
as an effective catalyst for the transamidation of primary
amides with amines. Advanced Synthesis & Catalysis, 356,
475–484. DOI: 10.1002/adsc.201300717.
Guo, Z. Q., Liu, Q., Wei, X. H., Zhang, Y. B., Tong, H. B.,
Chao, J. B., Guo, J. P., & Liu, D. S. (2013). 2-Aminopyrrolyl
dilithium compounds: Synthesis, structural diversity, and
catalytic activity for amidation of aldehydes with amines.
Organometallics, 32, 4677–4683. DOI: 10.1021/om4006609.
Hoerter, J. M., Otte, K. M., Gellman, S. H., Cui, Q. A.,
& Stahl, S. S. (2008). Discovery and mechanistic study
of AlIII-catalyzed transamidation of tertiary amides. Jour-
nal of the American Chemical Society, 130, 647–654. DOI:
10.1021/ja0762994.
Rhim, J. W. (2012). Physical-mechanical properties of agar/κ-
carrageenan blend film and derived clay nanocomposite film.
Journal of Food Science, 77, N66–N73. DOI: 10.1111/j.1750-
3841.2012.02988.x.
Rossi, S. A., Shimkin, K. W., Xu, Q., Mori-Quiroz, L. M.,
& Watson, D. A. (2013). Selective formation of secondary
amides via the copper-catalyzed cross-coupling of alkyl-
boronic acids with primary amides. Organic Letters, 15,
2314–2317. DOI: 10.1021/ol401004r.
Ruiz-Méndez, M. V., Posada de la Paz, M., Abian, J., Calaf,
R. E., Blount, B., Castro-Molero, N., Philen, R., & Gelpí,
E. (2001). Storage time and deodorization temperature in-
fluence the formation of aniline-derived compounds in de-
natured rapeseed oils. Food and Chemical Toxicology, 39,
91–96. DOI: 10.1016/s0278-6915(00)00111-3.
Iranpoor, N., Firouzabadi, H., Motevalli, S., & Talebi, M.
(2013). Palladium-free aminocarbonylation of aryl, ben-
zyl, and styryl iodides and bromides by amines using
Mo(CO)6 and norbornadiene. Tetrahedron, 69, 418–426.
DOI: 10.1016/j.tet.2012.10.002.
Sergeeva, M. V., Mozhaev, V. V., Rich, J. O., & Khmelnitsky, Y.
L. (2000). Lipase-catalyzed transamidation of non-activated
amides in organic solvent. Biotechnology Letters, 22, 1419–
1422. DOI: 10.1023/a:1005621117392.
Schley, N. D., Dobereiner, G. E., & Crabtree, R. H. (2011).
Oxidative synthesis of amides and pyrroles via dehydro-
genative alcohol oxidation by ruthenium diphosphine di-
amine complexes. Organometallics, 30, 4174–4179. DOI:
10.1021/om2004755.
Jegan, A., Ramasubbu, A., Saravanan, S.,
& Vasanthku-
mar, S. (2011). One-pot synthesis and characterization of
biopolymer-iron oxide nanocomposite. International Journal
of Nano Dimension, 2, 105–110.
Kawagoe, Y., Moriyama, K., & Togo, H. (2013). Facile prepa-
ration of amides from carboxylic acids and amines with
ion-supported Ph3P. Tetrahedron, 69, 3971–3977. DOI:
10.1016/j.tet.2013.03.021.
Kunishima, M., Watanaba, Y., Terao, K., & Tani, S. (2004).
Substrate-specific amidation of carboxylic acids in a liquid–
liquid two phase system using cyclodextrins as inverse phase-
transfer catalysts. European Journal of Organic Chemistry,
2004, 4535–4540. DOI: 10.1002/ejoc.200400470.
Lanigan, R. M., Starkov, P., & Sheppard, T. D. (2013). Di-
rect synthesis of amides from carboxylic acids and amines
using B(OCH2CF3)3. The Journal of Organic Chemistry,
78, 4512–4523. DOI: 10.1021/jo400509n.
Lundberg, H., Tinnis, F., Selander, N., & Adolfsson, H. (2014).
Catalytic amide formation from non-activated carboxylic
acids and amines. Chemical Society Reviews, 43, 2714–2742.
DOI: 10.1039/c3cs60345h.
Oza, M., Meena, R., & Siddhanta, A. K. (2012). Facile synthesis
of fluorescent polysaccharides: Cytosine grafted agarose and
κ-carrageenan. Carbohydrate Polymers, 87, 1971–1979. DOI:
10.1016/j.carbpol.2011.10.004.
Quan, Z. J., Xia, H. D., Zhang, Z., Da, Y. X., & Wang,
X. C. (2014). Ligand-free CuTC-catalyzed N-arylation of
amides, anilines and 4-aminoantipyrine: synthesis of N-
arylacrylamides, 4-amido-N-phenylbenzamides and 4-amino
(N-phenyl)antipyrenes. Applied Organometallic Chemistry,
28, 81–85. DOI: 10.1002/aoc.3080.
Silveira, G., de Morais, A., Mendes Villis, P. C., Marchetti
Maroneze, C., Gushikem, Y., Serpa Lucho, A. M.,
&
Pissettia, F. L. (2012). Electrooxidation of nitrite on a
silica–cerium mixed oxide carbon paste electrode. Jour-
nal of Colloid and Interface Science, 369, 302–308. DOI:
10.1016/j.jcis.2011.11.060.
Singh, D. P., Allam, B. K., Singh, K. M., & Singh, V. P.
(2014). A binuclear Mn(II) complex as an efficient catalyst
for transamidation of carboxamides with amines. RSC Ad-
vances, 4, 1155–1158. DOI: 10.1039/c3ra45176c.
Starkov, P., & Sheppard, T. D. (2011). Borate esters as con-
veninet reagents for direct amidation of carboxylic acids and
transamidation of primary amides. Organic & Biomolecular
Chemistry, 9, 1320–1323. DOI: 10.1039/c0ob01069c.
Stephenson, N. A., Zhu, J. A., Gellman, S. H., & Stahl, S. S.
(2009). Catalytic transamidation reactions compatible with
tertiary amide metathesis under ambient conditions. Journal
of the American Chemical Society, 131, 10003–10008. DOI:
10.1021/ja8094262.
Tamura, M., Tonomura, T., Shimizu, K. i., & Satsuma, A.
(2012). Transamidation of amides with amines under solvent-
free conditions using a CeO2 catalyst. Green Chemistry, 14,
717–724. DOI: 10.1039/c2gc16316k.
Tang, X. R., Chen, S. L., & Wang, L. (2012). Optimization and
antifungal activity of chalcone analogues. Asian Journal of
Chemistry, 24, 2516–2518.
Wang, N. N., Zou, X. Y., Ma, J. A., & Li, F. (2014a).
The direct synthesis of N-alkylated amides via a tandem
hydration/N-alkylation reaction from nitriles, aldoximes and
alcohols. Chemical Communications, 50, 8303–8305. DOI:
10.1039/c4cc02742f.
Rao, S. N., Mohan, R. D.,
& Adimurthy, S. (2013). L-
proline: An efficient catalyst for transamidation of carbox-
amides with amines. Organic Letters, 15, 1496–1499. DOI:
10.1021/ol4002625.
Raphael, E., Avellaneda, C. O., Manzolli, B., & Pawlicka, A.
(2010). Agar-based films for application as polymer elec-
trolytes. Electrochimica Acta, 55, 1455–1459. DOI: 10.1016/
j.electacta.2009.06.010.
Wang, Y. H., Wang, F., Zhang, C. F., Zhang, J. A., Li, M.
R., & Xu, J. (2014b). Transformylating amine with DMF to
formamide over CeO2 catalyst. Chemical Communications,
50, 2438–2441. DOI: 10.1039/c3cc48400a.
Rasheed, S., Rao, D. N., Reddy, A. S., Shankar, R., & Das,
P. (2015). Sulphuric acid immobilized on silica gel (H2SO4–
Wu, Y., Geng, F. Y., Chang, P. R., Yu, J. G., & Ma, X. F.
(2009). Effect of agarose on the microstructure and perfor-
Brought to you by | New York University Bobst Library Technical Services
Authenticated
Download Date | 9/7/15 12:26 PM