C O M M U N I C A T I O N S
removed, an intense green emission of the fluorescein at 525 nm
is detected. Consequently, by monitoring the emission signals at
525 nm, an AND logic gate is obtained, while detection at 390 nm
results in an INHIBIT logic gate. The truth table in Figure 2
summarizes the conditions by which the operation of this AND
gate in parallel to the previously described XOR logic gate offer
an input-configurable half-adder which in turn can produce sum
(S) and carry (C) bits of 0+0, 1+0, 0+1, and 1+1.
Molecular logic systems operating via combinatorial recognition
of input molecules provide a unique signaling pattern for each
reagent and therefore could handle considerable amounts of
chemically encoded information.8 The concept described in this
report is of a general nature and can be applied to extend the
processing abilities of any molecular logic gate hosting a substrate
to which a competitor is known by readjusting its signaling moieties
to respond to the inhibitor or to some of its physicochemical
properties.
Acknowledgment. We thank Mrs. Rachel Lazar, Mrs. Sara
Rubinraut, and Dr. Brenda Mester for their skillful assistance.
Support from the European Union (HPRN-CT-2000-00029) and
the Helen and Martin Kimmel Center for Molecular Design are
greatly acknowledged.
Figure 2. (Top) Schematic presentation describing the combinatorial effects
of the chemical inputs on the iron complex and the resulting fluorescence
emissions for (A) XOR/INHIBIT and (B) AND/INHIBIT logic patterns,
together operating as a half-adder and a half-subtractor, solely in the
fluorescence mode. (Bottom) Truth table for 1.5 µM 1-Fe(III) in EtOH
(1.5 mL) excited at 344 nm. Inputs: 20 µL aqueous solution of (a) 2 M
AcONa, (b) 1 M HCl, (c) saturated EDTA. Outputs: (d) fluorescence
outputs, intensity in arbitrary units. (C) carry, (B) borrow, (S/D) sum/
difference
Supporting Information Available: The synthesis of 1, additional
spectral data, and a representation of half-adder and half subtractor
electronic logic circuits. This material is available free of charge via
References
(1) (a) Ball, P. Nature 2000, 406, 118-120. (b) Balzani, V.; Credi, A.; Venturi,
M. ChemPhysChem 2003, 3, 49-59. (c) de Silva, A. P.; McClenaghan,
N. D. Chem. Eur. J. 2004, 10, 574-586. (d) Collier, C. P.; Wong, E. W.;
Belohradsky, M.; Raymo, F. M.; Stoddart, J. F.; Kuekes, P. J.; Williams,
R. S.; Heath, J. R. Science 1999, 285, 391-394. (e) Pina, F.; Melo, M.
J.; Maestri, M.; Passaniti, P.; Balzani, V. J. Am. Chem. Soc. 2000, 122,
4496-4498. (f) Raymo, F. M.; Giordani, S. J. Am. Chem. Soc. 2001,
123, 4651-4652. (g) Raymo, F. M.; Giordani, S. Proc. Natl. Acad. Sci.
U.S.A. 2002, 99, 4941-4944. (h) Andersson, M.; Sinks, L. E.; Hayes, R.
T.; Zhao, Y.; Wasielewski, M. R. Angew. Chem., Int. Ed. 2003, 42, 3139-
3143.
(2) (a) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Nature 1993, 364,
42-44. (b) Credi, A.; Balzani, V.; Langford, S. J.; Stoddart, J. F. J. Am.
Chem. Soc. 1997, 119, 2679-2681. (c) Gunnlaugsson, T.; MacDo´nail,
D. A.; Parker, D. Chem. Commun. 2000, 93-94. (d) de Silva, A. P.; Dixon,
I. M.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Maxwell, P. R. S.; Rice,
T. E. J. Am. Chem. Soc. 1999, 121, 1393-1394. (e) Ashton, P. R.; Baldoni,
V.; Balzani, V.; Credi, A.; Hoffmann, H. D. A.; Mart´ınez-D´ıaz, M.-V.;
Raymo, F. M.; Stoddart, J. F.; Venturi, M. Chem. Eur. J. 2001, 7, 3482-
3493. (f) Stojanovic, M. N.; Mitchell, T. E.; Stefanovic, D. J. Am. Chem.
Soc. 2002, 124, 3555-3561.
(3) (a) de Silva, A. P.; McClenaghan, N. D. J. Am. Chem. Soc. 2000, 122,
3965-3966. (b) Stojanovic, M. N.; Stefanovic, D. J. Am. Chem. Soc. 2003,
125, 6673-6676.
(4) Langford, S. J.; Yann, T. J. Am. Chem. Soc. 2003, 125, 11198-11199.
(5) Remacle, F.; Speiser, S.; Levine, R. D. J. Phys. Chem. B 2001, 105, 5589-
5591.
(6) (a) de Silva, A. P.; McClenaghan, N. D. Chem. Eur. J. 2002, 8, 4935-
4945. (b) Montenegro, J.-M.; Perez-Inestrosa, E.; Collado, D.; Vida, Y.;
Suau, R. Org. Lett. 2004, 6, 2353-2355.
(7) (a) Alves, S.; Pina, F.; Albelda, M. T.; Garcia-Espana, E.; Soriano, C.;
Luis, S. V. Eur. J. Inorg. Chem. 2001, 405-412. (b) Saghatelian, A.;
Volcker, N. H.; Guckian, K. M.; Lin, V. S.-Y.; Ghadiri, M. R. J. Am.
Chem. Soc. 2003, 125, 346-347.
fluorescein. However, when both acid and base are added, a buffer
solution is formed; the iron remains bound to the receptor, and no
significant change in output signal is observed. A characteristic
INHIBIT logic gate is achieved when the output is read at 525 or
390 nm. A XOR gate is obtained when the outputs are read
simultaneously at 390 and 525 nm. Observing multiple wavelengths
simultaneously has been recognized as a powerful tool for achieving
multiple logic expressions.6a Consequently, by an appropriate choice
of the wavelengths of detection, the molecule can be used to
generate simultaneously difference (D) and borrow (B) bits of 0-0,
1-0, 0-1, and 1-1.
Molecular systems mimicking the configuration of silicon-based
half-adders, with distinct AND and XOR logic gates that respond
to the same chemical inputs and their outputs detected separately,
have been demonstrated.3 An alternative, molecular approach, which
does not necessitate the use of different processing units, is to use
a molecule that can function in different modes, i.e., either as AND
or as XOR logic gate.
Under identical starting conditions the same system can recon-
figure its logic scheme to operate simultaneously as AND and
INHIBIT logic gates (Figure 2B), simply by replacing the acid
(HCl) with ethylenediamine tetraacetic acid (EDTA), which is a
weaker acid and also a competitive chelator for ferric ions.9 With
no inputs, no significant emission is detected. When EDTA is added,
it protonates the fluorescein and at the same time extracts the iron-
(III) ions, resulting in exclusive emission from the pyrene at 390
nm. Addition of a base (sodium acetate) causes ionization of the
fluorescein, but without removal of the iron, so that a faint green
emission is observed below the threshold barrier. Only when both
inputs are present, namely, the solution is basic and the iron is
(8) Malnic, B.; Hirono, J.; Sato, T.; Buck, L. B. Cell 1999, 96, 713-723.
(9) Weizman, H.; Ardon, O.; Mester, B.; Libman, J.; Dwir, O.; Hadar, Y.;
Chen, Y.; Shanzer, A. J. Am. Chem. Soc. 1996, 118, 12368-12375.
(10) (a) Diehl, H.; Markuszewski, R. Talanta 1989, 36, 416-418. (b) Martin,
E.; Pardo, A.; Guijarro, M. S.; Fernandez-Alonso, J. I. J. Mol. Struct.
1986, 142, 197-200.
(11) (a) Bodenant, B.; Fages, F.; Delville, M.-H. J. Am. Chem. Soc. 1998,
120, 7511-7519. (b) Nudelman, R.; Ardon, O.; Hadar, Y.; Chen, Y.;
Libman, J.; Shanzer, A. J. Med. Chem. 1998, 41, 1671-1678.
(12) Monzyk, B.; Crumbliss, A. L. J. Am. Chem. Soc. 1982, 104, 4921-4929.
JA0453329
9
J. AM. CHEM. SOC. VOL. 126, NO. 47, 2004 15401