ORGANIC
LETTERS
2007
Vol. 9, No. 2
359-362
Enantioselective Total Synthesis of
)-Erinacine B
(−
Hideaki Watanabe, Masashi Takano, Akinori Umino, Toshiya Ito,
Hiroyuki Ishikawa, and Masahisa Nakada*
Department of Chemistry, Faculty of Science and Engineering, Waseda UniVersity,
3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
Received November 28, 2006
ABSTRACT
The first enantioselective total synthesis of (−)-erinacine B has been achieved. Our approach features convergent construction of the 5-6-7
tricyclic cyathane core system via chiral building blocks prepared using asymmetric catalysis developed by us and highly stereoselective
construction of all stereogenic centers in the aglycon.
In 1994, Kawagishi et al. reported the isolation and structural
elucidation of (-)-erinacines A, B, and C.1a (-)-Erinacine
B is the first xylose-conjugated terpenoid possessing a
cyathane core, which features an unusual 5-6-7 tricyclic
carbon skeleton incorporating a trans-fused 6-7 ring system
and 1,4-anti quaternary methyl groups located at the ring
junctions. Erinacines and their congeners have been shown
to exhibit significant activity in stimulating nerve growth
factor (NGF) synthesis.1,2
have been reported; however, to our knowledge, no enan-
tioselective total synthesis of a cyathane xyloside with a
trans-fused 6-7 ring system such as erinacine has been
reported. We report herein an enantioselective total synthesis
of (-)-erinacine B in a convergent and highly stereoselective
manner via chiral building blocks prepared using asymmetric
catalysis developed by us.
Our synthetic strategy for (-)-erinacine B is based on the
retrosynthetic analysis outlined in Scheme 1. Because it was
Because of their structural complexity and significant
biological activity, much attention has been given to the
synthesis of erinacines, and several research groups have
developed different approaches to the construction of these
attractive polycyclic natural products.3,4 To date, four total
syntheses of cyathins3a-f as racemates3c-f or a product via
optical resolution3a,b and four enantioselective total syntheses4
(3) (a) Snider, B. B.; Vo, N. H.; O’Neil, S. V.; Foxman, B. M. J. Am.
Chem. Soc. 1996, 118, 7644-7645. (b) Snider, B. B.; Vo, N. H.; O’Neil,
S. V. J. Org. Chem. 1998, 63, 4732-4740. (c) Tori, M.; Toyoda, N.; Sono,
M. J. Org. Chem. 1998, 63, 306-313. (d) Piers, E.; Gilbert, M.; Cook, K.
L. Org. Lett. 2000, 2, 1407-1410. (e) Ward, D. E.; Gai, Y.; Qiao, Q. Org.
Lett. 2000, 2, 2125-2127. (f) Ward, D. E.; Gai, Y.; Qiao, Q.; Shen, J.
Can. J. Chem. 2004, 82, 254-267. For recent synthetic studies, see: (g)
Sato, A.; Masuda, T.; Arimoto, H.; Uemura, D. Org. Biomol. Chem. 2005,
3, 2231-2233. (h) Drege, E.; Morgant, G.; Desmaele, D. Tetrahedron Lett.
2005, 46, 7263-7266. For other synthetic studies, see references cited in
ref 4a.
(1) (a) Kawagishi, H.; Shimada, A.; Shirai, R.; Okamoto, K.; Ojima, F.;
Sakamoto, H.; Ishiguro, Y.; Furukawa, S. Tetrahedron Lett. 1994, 35, 1569-
1572. For recently reported erinacines, see: (b) Kawagishi, H.; Masui, A.;
Tokuyama, S.; Nakamura, T. Tetrahedron 2006, 62, 8463-8466. For natural
products possessing a cyathane skeleton, see references cited in ref 4a.
(2) Kawagishi, H.; Furukawa, S.; Zhuang, C.; Yunoki, R. Explore 2002,
11, 46-51.
(4) (+)-Allocyathin B2: (a) Takano, M.; Umino, A.; Nakada, M. Org.
Lett. 2004, 6, 4897-4900. (b) Trost, B. M.; Dong, L.; Schroeder, G. M. J.
Am. Chem. Soc. 2005, 127, 2844-2845. (c) Trost, B. M.; Dong, L.;
Schroeder, G. M. J. Am. Chem. Soc. 2005, 127, 10259-10268. (+)-
Cyanthiwigin U: (d) Pfeiffer, M. W. B.; Phillips, A. J. J. Am. Chem. Soc.
2005, 127, 5334-5335. (-)-Scabronine G: (e) Waters, S. P.; Tian, Y.; Li,
Y.-M.; Danishefsky, S. J. J. Am. Chem. Soc. 2005, 127, 13514-13515.
10.1021/ol0628816 CCC: $37.00
© 2007 American Chemical Society
Published on Web 12/15/2006