ORGANIC
LETTERS
2013
Vol. 15, No. 4
792–795
Regioselective Bromination of Fused
Heterocyclic N‑Oxides
Sarah E. Wengryniuk,† Andreas Weickgenannt,† Christopher Reiher,‡
Neil A. Strotman,‡ Ke Chen,*,‡ Martin D. Eastgate,*,‡ and Phil S. Baran*,†
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines
Road, La Jolla, California 92037, United States, and Chemical Development,
Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey, 08903, United States
pbaran@scripps.edu; ke.chen@bms.com; martin.eastgate@bms.com
Received December 18, 2012
ABSTRACT
A mild method for the regioselective C2-bromination of fused azine N-oxides is presented, employing tosic anhydride as the activator and tetra-n-
butylammonium bromide as the nucleophilic bromide source. The C2-brominated compounds are produced in moderate to excellent yields and
with excellent regioselectivity in most cases. The potential extension of this method to other halogens, effecting C2-chlorination with Ts2O/TBACl
is also presented. Finally, this method could be incorporated into a viable one-pot oxidation/bromination process, using methyltrioxorhenium/
urea hydropgen peroxide as the oxidant.
C2-substituted heteroarenes are common motifs in
bioactive molecules. The synthesis of these compounds
commonly relies on CÀC bond formation through cross-
coupling reactions or the introduction of heteroatoms
through SNAr techniques, both requiring prior generation
of the C2-halogenated derivative.1 Unfortunately, direct
incorporation of halogens onto heterocycles (Figure 1A,
1 f3) proves challenging, as issues of poor regioselectivity
and over halogenation often arise. C2-halogenation via the
corresponding N-oxides (readily available via oxidation of
the parent arenes) provides a popular alternative strategy
(Figure 1A). Thus, chlorination is commonly achieved
using POCl3 or PCl5 whereas iodination often requires a
metalation based strategy.2,3 Comparatively, there is a
dearth of mild, reliable methods for N-oxide bromination.
There have been a few reports on the bromination of
7-azaindoles, at both the 2- and 4-position,4 but these
reported methods have not found wide application, most
likely due to lack of generality. By far the most common
methods use POBr3 or Br2 at elevated temperatures.
(3) (a) Clark, R. B.; He, M. S.; Fyfe, C.; Lofland, D.; O’Brien, W. J.;
Plamondon, L.; Sutcliffe, J. A.; Xiao, X. Y. J. Med. Chem. 2011, 54 (5),
1511–1528. (b) Heitman, L. H.; Goblyos, A.; Zweemer, A. M.; Bakker,
R.; Mulder-Krieger, T.; van Veldhover, J. P. D.; de Vries, H.; Brussee, J.;
Ijzerman, A. P. J. Med. Chem. 2009, 52 (4), 926–931. (c) Lumeras, W.;
Caturla, F.; Vidal, L.; Esteve, C.; Balague, C.; Orellana, A.; Dominguez,
M.; Roca, R.; Huerta, J. M.; Godessart, N.; Vidal, B. J. Med. Chem.
2009, 52 (17), 5531–5545. (d) Paudler, W. W.; Jovanovic, M. V. J. Org.
Chem. 1983, 48 (7), 1064–1069. (e) Petitjean, A.; Kyritsakas, N.; Lehn,
J. M. Chem.;Eur. J. 2005, 11 (23), 6818–6828. (f) Richter, H. G. F.;
Adams, D. R.; Benardeau, A.; Bickerdike, M. J.; Bentley, J. M.; Blench,
T. J.; Cliffe, I. A.; Dourish, C.; Hebeisen, P.; Kennett, G. A.; Knight,
A. R.; Malcolm, C. S.; Mattei, P.; Misra, A.; Mizrahi, J.; Monck,
N. J. T.; Plancher, J. M.; Roever, S.; Roffey, J. R. A.; Taylor, S.;
Vickers, S. P. Bioorg. Med. Chem. Lett. 2006, 16 (5), 1207–1211. (g)
Yang, Y. H. Synth. Commun. 1989, 19 (5À6), 1001–1008. (h) Zhang,
Y. Q.; Guiguemde, W. A.; Sigal, M.; Zhu, F. Y.; Connelly, M. C.;
Nwaka, S.; Guy, R. K. Bioorgan. Med. Chem. 2010, 18 (7), 2756–2766.
(4) (a) Minakata, S.; Komatsu, M.; Ohshiro, Y. Synthesis-Stuttgart
1992, 7, 661–663. (b) Thibault, C.; L’Heureux, A.; Bhide, R. S.; Ruel, R.
Org. Lett. 2003, 5 (26), 5023–5025.
† The Scripps Research Institute.
‡ Bristol-Myers Squibb.
(1) (a) Taylor, E. C.; Crovetti, A. J. J. Org. Chem. 1954, 19 (10), 1633–
1640. (b) Inglis, S. R.; Stojkoski, C.; Branson, M. M.; Cawthray, J. F.;
Fritz, D.; Wiadrowski, E.; Pyke, S. M.; Booker, G. W. J. Med. Chem.
2004, 47 (22), 5405–5417. (c) Chambers, R. J.; Marfat, A. Synth.
Commun. 1997, 27 (3), 515–520. (d) Ji, J. G.; Li, T.; Bunnelle, W. H.
Org. Lett. 2003, 5 (24), 4611–4614. (e) Nicolaou, K. C.; Namoto, K.;
Ritzen, A.; Ulven, T.; Shoji, M.; Li, J.; D’Amico, G.; Liotta, D.; French,
C. T.; Wartmann, M.; Altmann, K. H.; Giannakakou, P. J. Am. Chem.
Soc. 2001, 123 (38), 9313–9323. (f) You, Y. M.; Park, S. Y. J. Am. Chem.
Soc. 2005, 127 (36), 12438–12439.
(2) (a) Mongin, F.; Trecourt, F.; Gervais, B.; Mongin, O.; Queguiner,
G. J. Org. Chem. 2002, 67 (10), 3272–3276. (b) Mongin, O.; Rocca, P.;
Thomasditdumont, L.; Trecourt, F.; Marsais, F.; Godard, A.; Queguiner,
G. J. Chem. Soc., Perkin Trans. 1 1995, No. 19, 2503–2508. (c) Trecourt,
F.; Gervais, B.; Mongin, O.; Le Gal, C.; Mongin, F.; Queguiner, G.
J. Org. Chem. 1998, 63 (9), 2892–2897.
r
10.1021/ol3034675
Published on Web 01/25/2013
2013 American Chemical Society