Kimura and Uozumi
SCHEME 1
FIGURE 1. Chiral phosphoramidite and phosphorodiamidite ligands.
knowledge, only three types of chiral diamine-based phospho-
rodiamidite ligands exhibiting good to excellent enantioselec-
tivity have been developed so far, L2, L3, and L4 (Figure 1).5-7
During our studies on the development of powerful chiral
agents, a hexahydro-1H-pyrrolo[1,2-c]imidazolone framework
bearing a bicyclic [3.3.0] backbone with an N-chiral bridgehead
nitrogen atom was identified as a highly stereoselective chiral
unit. Readily prepared from proline anilides,8 it was used to
prepare the imidazoindolephosphine ligand9 and the NCN pincer
palladium complex.10 As part of our ongoing effort to develop
wide utility for this chiral unit, we decided to replace the skeletal
carbon atom with a coordinating phosphorus atom to construct
chiral phosphorodiamidite ligands bearing the hexahydro-1H-
pyrrolo[1,2-c][1,3,2]diazaphosphole backbone (Scheme 1). Herein
we describe the design and preparation of the chiral phospho-
rodiamidite ligands and their preliminary use in Ir-catalyzed
asymmetric allylic etherification.
(4) For example of Ni-catalyzed hydrovinylation: Francio, G.; Faraone,
F.; Leitner, W. J. Am. Chem. Soc. 2002, 124, 736.
Results and Discussion
(5) (a) Hilgraf, R.; Pfaltz, A. Synlett 1999, 1814. (b) Hilgraf, R.; Pfaltz,
A. AdV. Synth. Catal. 2005, 347, 61.
Preparation of Phosphorodiamidite Ligands. Phospho-
rodiamidite ligands having the N-phenyl-P-phenoxy substituents
(3R,7aS)-1a, (3R,7aS)-1b, and (3R,7aS)-1c were readily prepared
by the reaction of phenylphosphorodichloridite with anilides of
(S)-proline (2), (S)-pyroglutamic acid (3), and (S)-indoline
carboxylic acid (7) in 65%, 76%, and 94% yield, respectively
(Scheme 2 and Figure 2). Phosphorus NMR studies revealed
that the phosphorodiamidites 1a-c were obtained with almost
perfect diastereoselectivities (1a: (3R,7aS)/(3S,7aS) ) 100/0,
1b: (3R,7aS)/(3S,7aS) ) 100/0, 1c: (3R,7aS)/(3S,7aS) ) 98/
2). The phosphorodiamidite ligands (3R,7aS)-1d, (3R,7aS)-1e,
(3R,7aS)-1f, and (3R,9aS)-1g bearing substituted N-aryl groups
were prepared from the corresponding substituted anilides 4,
5, 6, and 8 in 82% (diastereomeric ratio (dr) ) 95/5), 63% (dr
) 99/1), 76% (dr ) 100/0), and quantitative yield (dr ) 100/
0), respectively. 2,6-Disubstituted aryloxy groups were intro-
duced onto the phosphorus atom via the triaminophosphine
intermediates 9 or 10 (Scheme 3). Thus, the pyroglutamic anilide
3 and the indoline carboxylic anilide 7 reacted with tris-
(dimethylamino)phosphine in refluxing toluene for 12 h to give
the triaminophosphines 9 and 10, respectively. The triamino-
phosphines were subsequently treated with 2,6-dimethyl- or 2,6-
bis(isopropyl)phenol to afford single diastereomers of (3R,7aS)-
1h, (3R,7aS)-1i, and (3R,9aS)-1j in 53%, 31%, and 43% yield.
(6) (a) Nemoto, T.; Matsumoto, T.; Masuda, T.; Hitomi, T.; Hatano, K.;
Hamada, Y. J. Am. Chem. Soc. 2004, 126, 3690. (b) Nemoto, T.; Masuda,
T.; Matsumoto, T.; Hamada, Y. J. Org. Chem. 2005, 70, 7172.
(7) For asymmetric reactions by use of ligand L4, see: (a) Brunel, J.
M.; Constantieux, T.; Labande, A.; Lubatti, F.; Buono, G. Tetrahedron Lett.
1997, 38, 5971. (b) Muchow, G.; Burnel, J. M.; Maffei, M.; Pardigon, O.;
Buono, G. Tetrahedron 1998, 54, 10435. (c) Burnel, J. M.; Campo, B. D.;
Buono, G. Tetrahedron Lett. 1998, 39, 9663. (d) Constantieux, T.; Burnel,
J. M.; Labande, A.; Buono, G. Synlett 1998, 49. (e) Delapierre, G.;
Constantieux, T.; Burnel, J. M.; Buono, G. Eur. J. Org. Chem. 2000, 2507.
(f) Burnel, J. M.; Tenaglia, A.; Buono, G. Terahedron: Asymmetry 2000,
11, 3585. (g) Ansell, J.; Wills, M. Chem. Soc. ReV. 2002, 31, 259. (h)
Gavrilov, K. N.; Tsarev, V. N.; Shiryaev, A. A.; Bondarev, O. G.; Lyubimov,
S. E.; Benetsky, E. B.; Korlyukov, A. A.; Antipin, M. Y.; Davankov, V.
A.; Gais, H.-J. Eur. J. Org. Chem. 2004, 629. (j) Tsarev, V. N.; Lyubimov,
S. E.; Shiryaev, A. A.; Zheglov, S. V.; Bondarev, O. G.; Davankov, V. A.;
Kabro, A. A.; Moiseev, S. K.; Kalinin, V. N.; Gavrilov, K. N. Eur. J. Inorg.
Chem. 2004, 2214.
(8) (a) Uozumi, Y.; Mizutani, K.; Nagai, S.-I. Tetrahedron Lett. 2001,
42, 407. (b) Uozumi, Y.; Yasoshima, K.; Miyachi, T.; Nagai, S.-I.
Tetrahedron Lett. 2001, 42, 411.
(9) (a) Uozumi, Y.; Shibatomi, K. J. Am. Chem. Soc. 2001, 123, 2919.
(b) Shibatomi, K.; Uozumi, Y. Tetrahedron: Asymmetry 2002, 13, 1769.
(c) Uozumi, Y.; Tanaka, H.; Shibatomi, K. Org. Lett. 2004, 6, 281. (d)
Nakai, Y.; Uozumi, Y. Org. Lett. 2005, 7, 291. (e) Uozumi, Y.; Kimura,
M. Tetrahedron: Asymmetry 2006, 17, 161.
(10) (a) Takenaka, K.; Uozumi, Y. Org. Lett. 2004, 6, 1833. (b) Takenaka,
K.; Uozumi, Y. AdV. Synth. Catal. 2004, 346, 1693. (c) Takenaka, K.;
Minakawa, M.; Uozumi, Y. J. Am. Chem. Soc. 2005, 127, 12273.
708 J. Org. Chem., Vol. 72, No. 3, 2007