C O M M U N I C A T I O N S
Table 3. Mo-Mediated Hetero-PKR of 1,6-Yne Aldehydes
In summary, we have developed an efficient and general Mo-
mediated cyclocarbonylation of 1,6- and 1,7-yne aldehydes. This
novel hetero-PKR occurs under very mild conditions in the absence
of a carbon monoxide gas atmosphere. Starting from readily
available chiral aldehydes, highly valuable, enantiomerically pure
fused butenolides are obtained.
entry
X
R
substrate
additive
product
A:Ba
yield (%)b
Acknowledgment. Financial support by the Ministerio de
Educacio´n y Ciencia (MEC, BQU2003-0508), Consejer´ıa de
Educacio´n de la CAM, and the Universidad Auto´noma de Madrid
(UAM/CAM (08/PPQ/001)) is gratefully acknowledged. J.A. thanks
the MEC for a Ramon y Cajal contract.
1
2
3
4
5
6
7
C(CO2Et)2
C(CO2Et)2
C(CO2Et)2
C(CO2Et)2 Me
N-Boc
H
H
H
15
15
15
17
19
21
23
16
16
16
18
20
22
24
82:18
88:12
92:8
>98:<2
>98:<2
93:7
69
65
63
73
72
70
65e
Et3Bc
Et3Bd
Et3Bd
Et3Bd
Et3Bd
Et3Bd
H
Ph
H
N-Boc
C(SO2Ph)2
Supporting Information Available: Experimental procedures,
characterization data of new compounds, copies of NMR spectra, and
X-ray crystallography data of exo-34 (PDF). This material is available
90:10
a Determined by 1H NMR of the crude mixtures. b Isolated yield in adduct
A after column chromatography. c 10 mol % of Et3B. d 100 mol % of Et3B.
e Yield in A + B mixture.
References
Table 4. Mo-Mediated Hetero-PKR of Enantiomerically Pure Yne
Aldehydes
(1) For a recent review on PKR, see: Struebing, D.; Beller, M. In Transition
Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-
VCH: Weinheim, Germany, 2004; pp 619-632.
(2) Main versions of oxa-hetero-PKR and related processes. For Ti-mediated
cyclocarbonylation of alkenyl ketones and aldehydes, see: (a) Kablaoui,
N. M.; Hicks, H. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 5818-
5819. (b) Crowe, W. E.; Vu, A. T. J. Am. Chem. Soc. 1996, 118, 1557-
1558. (c) Kablaoui, M.; Hicks, H. A.; Buchwald, S. L. J. Am. Chem. Soc.
1997, 119, 4424-4431. (d) Mandal, S. K.; Amin, S. R.; Crowe, W. E. J.
Am. Chem. Soc. 2001, 123, 6457-6458. For Ru-catalyzed cyclocarbo-
nylation of allenyl aldehydes and ketones, see: (e) Kang, S.-K.; Kim,
K.-J.; Hong, Y.-T. Angew. Chem., Int. Ed. 2002, 41, 1584-1586. For
Ni-mediated cyclocarbonylation of alkenyl aldehydes, see: (f) Ogoshi,
S.; Oka, M.; Kurosawa, H. J. Am. Chem. Soc. 2004, 126, 11802-11803.
For Mo-mediated cyclocarbonylation of allenyl or cyclopropylidenyl
aldehydes, see: (g) Yu, C.-M.; Hong, Y.-T.; Yoon, S.-K.; Lee, J.-H. Synlett
2004, 1695-1698. (h) Yu, C.-M.; Hong, Y.-T.; Lee, J.-H. J. Org. Chem.
2004, 69, 8506-8509.
entry
X
R1
R2
substrate
product
exo:endoa
yield (%)
1
2
3
4
5
O
O
O
Me
Me
Me
iPr
H
25
27
29
31
33
26
28
30
32
34
92:8
>98:<2
>98:<2
14:86
68b
71
Me
Ph
H
76
N-Boc
N-Boc
62b
73c
iPr
Ph
30:70
a Determined by 1H NMR of the crude mixtures. b Yield in the mixture
exo/endo after column chromatography. c Yield of 51 and 22% of endo and
exo adducts, respectively, after column chromatography.
(3) (a) Bruckner, R. Curr. Org. Chem. 2001, 5, 679-718. γ-Butyrolactones
are present in about 10% of all natural products. See: (b) Seitz, M.; Reiser,
O. Curr. Opin. Chem. Biol. 2002, 6, 453-458.
(4) Chantani, N.; Morimoto, T.; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc.
1998, 120, 5335-5336.
Scheme 1. Synthesis of the (+)-Dihydrocanadensolide Epimer 35
(5) Fuji, K.; Morimoto, T.; Tsutsumi, K.; Kakiuchi, K. Chem. Commun. 2005,
3295-3297.
(6) Adrio, J.; Rodr´ıguez-Rivero, M.; Carretero, J. C. Org. Lett. 2005, 7, 431-
434.
(7) For leading references on Mo-mediated PKR of enynes, see: (a)
Brummond, K. M.; Curran, D. P.; Mitasev, B.; Fischer, S. J. Org. Chem.
2005, 70, 1745-1753. (b) Cao, H.; Van Ornui, S. G.; Deschamps, J.;
Flippen-Anderson, J.; Laib, F.; Cook, J. M. J. Am. Chem. Soc. 2005, 127,
933-935.
(8) Lower yields were obtained in other solvents, such as toluene, CH2Cl2,
or CH3CN.
stereochemical outcome was obtained with the phenyl- and methyl-
substituted alkynes 27 and 29, which provided the exo adducts with
complete selectivity (entries 2 and 3). In contrast, the N-Boc
aldehydes derived from L-valine (31 and 33, entries 4 and 5) led to
the corresponding butenolides with similar yields but reversed
diastereoselectivity, showing the sensitivity of the exo/endo ratio
to the substitution at the R-position and tether.13 We also checked
that the hetero-PKR takes place without racemization at the
R-position of aldehydes 29 and 33, as confirmed by the very high
enantiopurity of the butenolides 30 and endo-34 (96 and 98% ee,
respectively, HPLC).
To highlight its synthetic potential, this highly convergent
approach to the synthesis of bicyclic butenolides was finally applied
to the straightforward synthesis of an epimer of dihydrocanaden-
solide (35), a biologically active bislactone metabolite isolated from
Penicillium canadense (Scheme 1).14 The exposure of the enan-
tiomerically pure aldehyde 36 to the usual Mo-mediated reaction
conditions afforded the butenolide 37 (61% yield) with complete
exo selectivity. Hydrogenation of the C-C double bond followed
by Ru-catalyzed ether-to-ester oxidation under Sharpless’ condi-
tions15 gave rise to the bislactone 35 as a single stereoisomer in
80% overall yield.
(9) No reaction at all occurred when diethyl 2-(2-oxopropyl)-2-propargyl-
malonate was used as substrate.
(10) For example, the addition of isopropanol or water produced a decrease in
the reaction yield, while the use of PPh3 did not significantly affect the
A/B selectivity.
(11) For an example of the use of boranes as Lewis acid in metal-mediated
aldehyde cyclizations, see: Yu, C.-M.; Youn, J.; Lee, M.-K. Org. Lett.
2005, 7, 3733-3736.
(12) The endo/exo configurational assignment was established by 1H NMR
experiments and by X-ray diffraction analysis of exo-34 (see Supporting
Information for details).
(13) Although the Co-mediated PKR of allylic-substituted 1,6-enynes is usually
exo selective (see for instance (a) Magnus, P.; Principe, L. M. Tetrahedron
Lett. 1985, 26, 4851-4854. (b) Mukai, C.; Kim, J. S.; Sonobe, H.;
Hanaoka, M. J. Org. Chem. 1999, 64, 6922-6832), some examples of
endo selective PKR have been reported (see for instance (c) Adrio, J.;
Rodriguez-Rivero, M.; Carretero, J. C. Angew. Chem., Int. Ed. 2000, 39,
2906-2909. (d) Rios, R.; Perica`s, M. A.; Moyano, A.; Maestro, M. A.;
Mahia, J. Org. Lett. 2002, 4, 1205-1208).
(14) For the isolation of dihydrocanadensolide, see: (a) McCorkindale, N. J.;
Wright, J. L.; Brian, P. W.; Clarke, S. M.; Hutchinson, S. A. Tetrahedron
Lett. 2001, 42, 6183-6186. (b) Kato, M.; Kageyama, M.; Tanaka, R.;
Kuwahara, K.; Yoshikoshi, A. J. Org. Chem. 1975, 40, 1932-1941. For
recent synthesis, see: (c) Mulzer, J.; Kattner, L. Angew. Chem., Int. Ed.
1990, 29, 679-680. (d) Chen, M.-J.; Narkunan, K.; Liu, R.-S. J. Org.
Chem. 1999, 64, 8311-8311. (e) Sharma, G. V. M.; Gopinath, T.
Tetrahedron 2003, 59, 6521-6530.
(15) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org.
Chem. 1981, 46, 3936-3938.
JA0684186
9
J. AM. CHEM. SOC. VOL. 129, NO. 4, 2007 779