900 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 5
Letters
Bressanelli, S.; Tomei, L.; Roussel, A.; Incitti, I.; Vitale, R. L.;
Mathieu, M.; De Francesco, R.; Rey, F. A. Crystal structure of the
RNA-dependent RNA polymerase of hepatitis C virus. Proc. Natl.
Acad. Sci. U.S.A. 1999, 96, 13034-13039.
0.47 uM, respectively. Moreover, both 20b and 21b displayed
excellent pharmacokinetic profiles in the rat, with good oral
bioavailabilities and low iv clearance values. The stereochem-
istry of 21b was confirmed as (2S,4S,5R) by single molecule
X-ray crystallography. It is noteworthy that the beta methyl ether
16b also demonstrated a good PK profile in the rat.
(7) (a) Beaulieu, L. P.; Tsantrizos, Y. S. Inhibitors of the HCV NS5B
polymerase: New hope for the treatment of hepatitis C infections.
Curr. Opin. InVest. Drugs 2004, 5, 838-850. (b) Gordon, C. P.;
Keller, P. A. Control of hepatitis C: A medicinal chemistry
perspective. J. Med. Chem. 2005, 48, 1-20. (c) Gopalsamy, A.;
Aplaska, A.; Ciszewski, G.; Park, K.; Ellingboe, J. W.; Orlowski,
M.; Feld, B.; Howe, A. Y. M. Design, and synthesis of 3,4-dihydro-
1H-[1]-benzothieno[2,3-c]pyran and 3,4-dihydro-1H-[1]-benzofuran
derivatives as non-nucleoside inhibitors of HCV NS5B RNA de-
pendent RNA polymerase. Bioorg. Med. Chem. Lett. 2006, 16, 457-
460. (d) Aminothiazole, inhibitors of HCV RNA polymerase. Bioorg.
Med. Chem. Letters 2005, 15, 115-119. (e) Chan, L.; Pereira, O.;
Reddy, T. J.; Das, S. K.; Poisson, C.; Courchesne, M.; Proulx, M.;
Siddiqui, A.; Yannopoulos, C. G.; Nguyen-Ba, N.; Roy, C.; Nasturica,
D.; Moinet, C.; Bethell, R.; Hamel, M.; L’Heureux, L.; Maud, D.;
Nicolas, O.; Cortemanche-Asselin, P.; Brunette, S.; Bilimoria, D.;
Bedard, J. Discovery of thiophene-2-carboxylic acids as potent
inhibitors of HCV NS5B polymerase and HCV subgenomic RNA
replication. Part 2: Tertiary amides. Bioorg. Med. Chem. Letters
2004, 14, 797-800. (f) Li, H.; Tatlock, J.; Linton, A.; Gonzalez, J.;
Borchardt, A.; Dragovich, P.; Jewell, T.; Prins, T.; Zhou, R.; Blazel,
J.; Parge, H.; Love, R.; Hickey, M.; Doan, C.; Shi, S.; Duggal, R.;
Lewis, C.; Fuhrman, S. Identification and structure-based optimization
of novel dihydropyranones as potent HCV RNA polymerase inhibi-
tors. Bioorg. Med. Chem. Letters 2006, 16, 4834-4838. (g) Tedesco,
R.; Shaw, A. N.; Bambel, R.; Chai, D.; Concha, N. O.; Darcy, M.
G.; Dhanak, D.; Fitch, D. M.; Gates, A.; Gerhardt, W. G.; Halegoua,
D. L.; Han, C.; Hofmann, G. A.; Johnston, V. K.; Kaura, A. C.; Liu,
N.; Keenan, R. M.; Lin-Goerke, J.; Sarisky, R. T.; Wigall, K. J.;
Zimmerman, M. N.; Duffy, K. J. 3-(1,1-Dioxo-2H-(1,2,4)-benzothia-
diazin-3-yl)-4-hydroxy-2(1H)-quinolinones, potent inhibitors of hepa-
titis C virus RNA-dependent RNA polymerase. J. Med. Chem. 2006,
49 (3), 971-983.
Compound 20b thus achieved our objective of combining
very good potency in the HCV replicon with a good PK profile
in the rat and was selected for further development. In the
marmoset, 20b had a similarly good PK profile (F ) 50%, iv
clearance ) 10 mL/min/kg, 17% of liver blood flow). In further
studies in the replicon system, negligible attenuation (∼2-fold)
of the potency was observed in the presence of human serum
albumin (30 mg/mL); additionally, 20b and interferon R-2a
demonstrated a synergistic inhibitory effect in combination
assays. A detailed biological profile of 20b will be published
in due course.17
In summary, we have described the optimization of the acyl
pyrrolidine series leading to submicromolar inhibitors in the
replicon. Replacing the polar amide at the C4-position with a
lipophilic methoxymethyl moiety resulted in 20b, a molecule
combining very good replicon potency and good pharmaco-
kinetics suitable for further development as an anti-HCV agent.
Acknowledgment. We thank Stephen Richards for NMR
spectroscopic work, Bill Leavens for accurate mass determina-
tions, Eric Hortense for chiral analysis and separations, Steve
Jackson for chiral separations, and Tadeusz Skarzynski and
Maire Convery for assistance with structural aspects.
(8) (a) Burton, G.; Ku, T. W.; Carr, T. J.; Kiesow, T.; Sarisky, R. T.;
Lin-Goerke, J.; Baker, A.; Earnshaw, D. L.; Hofmann, G. A.; Keenan,
R. M.; Dhanak, D. Identification of small molecule inhibitors of the
hepatitis C RNA-dependent RNA polymerase from a pyrrolidine
combinatorial mixture. Bioorg. Med. Chem. Lett. 2005, 15, 1553-
1556. (b) Burton, G.; Ku, T. W.; Carr, T. J.; Kiesow, T.; Sarisky, R.
T.; Lin-Goerke, J.; Hofmann, G. A.; Slater, M. J.; Haigh, D.; Dhanak,
D.; Johnson, V. K.; Parry, N. R.; Thommes, P. Studies on acyl
pyrrolidine inhibitors of HCV RNA-dependent RNA polymerase to
identify a molecule with replicon antiviral activity. Bioorg. Med.
Chem. Lett. 2007, accepted for publication.
Supporting Information Available: Experimental procedures
for the preparation of compounds, spectral and analytical character-
izing data, procedures for the biochemical assay, replicon assay,
and Vero cytotoxicity assay, and rat pharmacokinetic studies. This
material is available free of charge via the Internet at http://
pubs.acs.org.
References
(9) The stereochemistry of the (+) enantiomer was shown to be
(2S,4S,5R) by small molecule x-ray crystallography. Compounds
labeled as a (e.g., 1a) are racemic and those labeled as b are
homochiral.
(1) Poordad, F. F.; Tran, T.; Martin, P. F. Developments in hepatitis C
therapy during 2000-2002. Expert Opin. Emerging Drugs 2003, 8
(1), 9-25.
(2) (a) Gerber, M. A. Relation of hepatitis C to hepatocellular carcinoma.
J. Hepatol. 1993, 17 (suppl 3), S108-111. (b) Alter, M. J.
Epidemiology of hepatitis C. Hepatology 1997, 26, 62S-65S. (c)
Hoofnagle, J. H. Hepatiitis C: The clinical spectrum of disease.
Hepatology 1997, 26, 15S-20S. (d) Di Bisceglie, A. M. Hepatitis
C. Lancet 1998, 351, 351-355. (e) Hoofnagle, J. H. Therapy of viral
hepatitis. Digestion 1998, 59, 563-578.
(10) Lohmann, V.; Korner, F.; Koch, J.-O.; Herian, U.; Theilmann, L.;
Bartenschlager, R. Replication of subgenomic heptatits C virus RNAs
in a hepatoma cell line. Science 1999, 285, 110-113.
(11) Barr, D. A.; Dorrity, M. J.; Grigg, R.; Hargreaves, S.; Malone, J. F.;
Montgomery, J.; Redpath, J.; Stevenson, P.; Thornton-Pett, M. X )
Y-ZH compounds as potential 1,3-Dipoles. Part 43. Metal ion
asymmetric 1,3-dipolar cycloaddition reactions of imines and menthyl
acrylate. Tetrahedron 1995, 51, 273-294.
(12) Lipinski, C. A. Lead and drug-like compounds: The rule-of-five
revolution. Drug DiscoVery Today 2004, 1, 337-341.
(13) The opposite pyrrolidine enantiomer was obtained from the mother
liquors and processed through to the inactive enantiomer of 20b using
identical chemistry, confirming that (R)-BINAP phosphate gave the
desired enantiomer.
(14) ACD/CLogD (at pH 7.4), version 8.0, Advanced Chemistry Develop-
(15) Note that the IC50 values obtained from the filtermat assay are
generally 4-10-fold lower than the ones from the SPA assay. For
example, 9b has IC50 ) 0.99 uM in the SPA assay (0.014 uM in
filtermat assay) and 11b has IC50 ) 0.053 uM in the SPA assay
(0.005 uM in filtermat assay), while 21b has IC50 ) 0.43 uM in the
SPA assay (0.16 uM in the filtermat assay). Both assays are described
in the Supporting Information. All enzyme and replicon determina-
tions are the average of at least two assays.
(3) Cornberg, M.; Wedemeyer, H.; Manns, M. P. Treatment of chronic
hepatitis C with PEGylated interferon and ribavirin. Curr. Gastro-
enterol. Rep. 2002, 4, 23-30.
(4) Hugle, T.; Cerny, A. Current therapy and new molecular approaches
to antiviral treatment and prevention of hepatitis C. ReV. Med. Virol.
2003, 13, 361-371.
(5) (a) Pawlotsky, J.-M.; McHutchinson, J. G. Hepatitis C. Development
of new drugs and clinical trials: promises and pitfalls. Hepatology
2004, 39, 554-567. (b) Penin, F.; Dubuisson, J.; Rey, F. A.;
Moradpour, D.; Pawlotsky, J.-M. Structural biology of hepatitis C
virus. Hepatology 2004, 39, 5-19.
(6) (a) Behrens, S. E.; Tomei, L.; De Francisco, R. Identification and
properties of the RNA-dependent RNA polymerase of hepatitis C
virus. EMBO J. 1996, 15, 12-22. (b) Kolykhalov, A. A.; Mihalik,
K.; Feinstone, S. M.; Rice, C. M. Hepatitis C virus-encoded enzymatic
activities and conserved RNA elements in the 3′-nontranslated region
are essential for virus replication in vivo. J. Virol. 2000, 74, 2046-
2051. (c) Ago, H.; Adachi, T.; Yoshida, A.; Yamamoto, M.; Habuka,
N.; Yatsunami, K.; Miyano, M. Crystal structure of the RNA-
dependent RNA polymerase of hepatitis C virus. Structure 1999, 7,
1417-1426. (d) Lesburg, C. A.; Cable, M. B.; Ferrari, E.; Hong, Z.;
Mannarino, A. F.; Weber, P. C. Crystal structure of the RNA-
dependent RNA polymerase from hepatitis C virus reveals a fully
encircled active site. Nat. Struct. Biol. 1999, 6, 937-943. (e)
(16) Chemistry was initially conducted in the racemic series (a) and then
repeated in the homochiral series (b).
(17) Biological properties of the acyl pyrrolidine 3082, a novel NS5B
HCV polymerase inhibitor, unpublished results (manuscript in
preparation, Thommes, P. et al.).
JM061207R