C O M M U N I C A T I O N S
We have shown that click chemistry both simplifies the synthesis
of efficient bifunctional ligands in which 1,4-disubstituted triazoles
form an integral part of the metal chelating system and facilitates
their incorporation into (bio)molecules. Labeling of the chelators
and bioconjugates with fac-“Tc/Re(CO)3” is efficient and results
in complexes that are stable in vitro and in vivo. The one-pot
procedure represents a remarkable improvement for the synthesis
of metal-labeled conjugates, for example, for diagnostic purposes.
Extension of the “click-to-chelate” approach to the preparation of
structurally diverse ligand systems suitable for complexation of
other metals is currently being investigated.
Figure 2. Labeling capacities of ligands 5-8 and Nꢀ-methyl histidine (Me-
His) with [99mTc(OH2)3(CO)3]+.
Acknowledgment. We thank Judith Stahel and Elisa Garcia-
Garayoa for technical assistance, and Jason Holland for DFT.
Scheme 2. One-Pot Procedure to Yield Radiolabeled Conjugates
Directly
Supporting Information Available: Experimental procedures and
analytical data for all compounds, DFT calculations, and in vitro and
in vivo data for 99mTc-labeled bombesin derivative 9. This material is
References
(1) Banerjee, S. R.; Maresca, K. P.; Francesconi, L.; Valliant, J.; Babich, J.
W.; Zubieta, J. Nucl. Med. Biol. 2005, 32, 1-20.
(2) Alberto, R.; Schibli, R.; Egli, A.; Schubiger, A. P.; Abram, U.; Kaden, T.
A. J. Am. Chem. Soc. 1998, 120, 7987-7988.
(3) Alberto, R. New Organometallic Technetium Complexes for Radiophar-
maceutical Imaging. In Contrast Agents III: Radiopharmaceuticalssfrom
Diagnostics to Therapeutics; Springer: Berlin, 2005; Vol. 252, pp 1-44.
(4) van Staveren, D. R.; Benny, P. D.; Waibel, R.; Kurz, P.; Pak, J. K.; Alberto,
R. HelV. Chim. Acta 2005, 88, 447-460.
the carboxylate.19 The characteristic features of the NMR spec-
tra of isolated complexes are consistent with those reported
for Tc/Re(CO)3 complexes of Nꢀ-functionalized histidine deriv-
atives.12
(5) Stephenson, K. A.; Zubieta, J.; Banerjee, S. R.; Levadala, M. K.; Taggart,
L.; Ryan, L.; McFarlane, N.; Boreham, D. R.; Maresca, K. P.; Babich, J.
W.; Valliant, J. F. Bioconjugate Chem. 2004, 15, 128-136.
(6) Levadala, M. K.; Banerjee, S. R.; Maresca, K. P.; Babich, J. W.; Zubieta,
J. Synthesis 2004, 1759-1766.
Radioactive complexes [99mTc(CO)3(5-12)] were also obtained
as single products.23,24 For ligands 5-8, varying the ligand
concentration gave rise to step-sigmoid curves (Figure 2). EC50
values of investigated regular click ligands ranged from 2 to 3 ×
10-7 M. These values were comparable to that of Nꢀ-methyl
histidine (EC50 ) ∼10-7 M), demonstrating the potency of the
regular triazole ligands 5/6. Values of inverse click ligands 7/8 were
approximately 2 orders of magnitude higher (EC50 ) ∼10-5 M),
presumably a consequence of the lower electron density at N(2)
compared to that at N(3) of the triazole heterocycle (DFT
calculations).19
While the click products represent a class of extraordinarily good
chelators, the individual substrates (e.g., alkyne 1 and azide 2) do
not form stable or defined complexes with [M(OH2)3(CO)3]+. This
observation spurred the idea of a one-pot procedure to avoid
isolation of the functionalized (bio)molecule prior to labeling with
[M(OH2)3(CO)3]+. Thus, aqueous solutions of 3′-azido thymidine
or 1-azido-1-deoxy-â-D-galactopyranose and alkyne 1, Cu(OAc)2,
and Na(ascorbate) were heated to 100 °C for 30 min. [99mTc(OH2)3-
(CO)3]+ was added, and the mixtures were heated for further 30
min (Scheme 2). HPLC analysis confirmed the clean formation of
complexes [99mTc(CO)3(10)] and [99mTc(CO)3(11)], identical to the
products obtained with presynthesized and purified ligands 10 and
11.19
(7) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596-2599.
(8) Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn,
M. G. J. Am. Chem. Soc. 2003, 125, 3192-3193.
(9) Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1, 13-21.
(10) van Staveren, D. R.; Metzler-Nolte, N. Chem. Commun. 2002, 1406-
1407.
(11) van Staveren, D. R.; Bill, E.; Bothe, E.; Buhl, M.; Weyhermuller, T.;
Metzler-Nolte, N. Chem.sEur. J. 2002, 8, 1649-1662.
(12) Pak, J. K.; Benny, P.; Spingler, B.; Ortner, K.; Alberto, R. Chem.sEur.
J. 2003, 9, 2053-2061.
(13) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004,
6, 2853-2855.
(14) Dai, Q.; Gao, W. Z.; Liu, D.; Kapes, L. M.; Zhang, X. M. J. Org. Chem.
2006, 71, 3928-3934.
(15) Moore, D. S.; Robinson, S. D. AdV. Inorg. Chem. 1988, 32, 171-239.
(16) Link, A. J.; Vink, M. K. S.; Tirrell, D. A. J. Am. Chem. Soc. 2004, 126,
10598-10602.
(17) Kuijpers, B. H. M.; Groothuys, S.; Keereweer, A. R.; Quaedflieg, P.;
Blaauw, R. H.; van Delft, F. L.; Rutjes, F. Org. Lett. 2004, 6, 3123-
3126.
(18) van Staveren, D. R.; Mundwiler, S.; Hoffmanns, U.; Pak, J. K.; Spingler,
B.; Metzler-Nolte, N.; Alberto, R. Org. Biomol. Chem. 2004, 2, 2593-
2603.
(19) See Supporting Information for details.
(20) Dumas, C.; Petrig, J.; Frei, L.; Spingler, B.; Schibli, R. Bioconjugate Chem.
2005, 16, 421-428.
(21) Storr, T.; Obata, M.; Fisher, C. L.; Bayly, S. R.; Green, D. E.; Brudzinska,
I.; Mikata, Y.; Patrick, B. O.; Adam, M. J.; Yano, S.; Orvig, C. Chem.s
Eur. J. 2004, 11, 195-203.
(22) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057-
The radiolabeled bombesin derivative [99mTc(CO)3(9)] was
assessed in vitro and in vivo for its stability and receptor affinity.19
These preliminary experiments revealed a high in vivo stability of
the conjugate and an almost identical pharmacological profile to
3064.
(23) The identity of the technetium species was verified by comparison of the
γ-HPLC trace (99mTc) with the UV-HPLC trace (254 nm) of the
corresponding Re complexes. See Supporting Information.
(24) We were able to show that [99mTc(CO)3(5-12)] can be quantitatively
synthesized directly, by reacting 5-12 in presence of [99mTcO4]- in a
vial containing the IsoLink components necessary for formation of the
[
99mTc(CO)3NRAcHis-bombesin],25 a previously tested stable bomb-
[
99mTc(OH2)3(CO)3]+. See Supporting Information for details.
esin analogue with sequence homology but a histidine chelate
(detailed results will be published elsewhere). These results suggest
that the new triazole ligands represent a valuable alternative to
histidine-derived chelators.
(25) Garcia-Garayoa, E.; Ruegg, D.; Bla¨uenstein, P.; Zwimpfer, M.; Maes,
V.; Khan, I. U.; Blanc, A.; Beck-Sickinger, A.; Tourwe, D.; Schubiger,
A. P. Nucl. Med. Biol. 2006, in press.
JA066779F
9
J. AM. CHEM. SOC. VOL. 128, NO. 47, 2006 15097