Communication
Organic & Biomolecular Chemistry
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) J. Alam and J. L. Cook, Anal. Biochem., 1990, 188, 245;
(b) L. H. Naylor, Biochem. Pharmacol., 1999, 58, 749.
2 Z. Liu, T. Gurlo and H. von Grafenstein, J. Immunol.
Methods, 2000, 234, 153.
3 S. M. Z. Hossain and J. D. Brenna, Anal. Chem., 2011, 83,
8772.
4 (a) L. Fiksdal and I. Tryland, Curr. Opin. Biotechnol., 2008,
19, 289; (b) J. C. Jokerst, J. A. Adkins, B. Bisha,
M. M. Mentele, L. D. Goodridge and C. S. Henry, Anal.
Chem., 2012, 84, 2900.
Fig. 3 Conversion of the substrate 1 (0.1 mM) to the product after
addition of varying concentration of β-Gal in Tris buffer (pH 7, 50 mM)
at room temperature. Error bars represent the standard deviation where
n = 3.
5 J. Kiernan, Biotech. Histochem., 2007, 82, 73.
6 B. Rotman, J. A. Zderic and M. Edelstein, Proc. Natl. Acad.
Sci. U. S. A., 1963, 50, 1.
7 E. Pershagen and K. E. Borbas, Angew. Chem., Int. Ed.,
2015, 54, 1787.
8 J. Wang, Biosens. Bioelectron., 2006, 21, 1887.
9 D. Wang, J. Chen and S. R. Nugen, Anal. Chem., 2017, 89,
1650.
It has been previously shown that β-Gal has a large toler-
ance to the aglycon, as long as the D-galactose moiety remains
untouched.24 To further explore how the sterics of the sub-
strate could impact β-Gal activity, substrate 11 was synthesised
(Fig. 4), and tested utilising the optimal conditions (see ESI,
Fig. S8†). Comparatively, substrate 11, was significantly slower
than substrate 1. At low β-Gal concentration of 0.1 U mL−1
a
conversion of 12 6% within 60 minutes, compared to a con-
version of 16 1% for substrate 1. The calculated rate con-
stants of 0.04 × 10−3 s−1 and 0.06 × 10−3 s−1 for substrate 11
and 1 respectively (see ESI, Fig. S9†), show only a small differ-
ence in rate between the two regioisomers. This difference in
rate of hydrolysis, is more significant at 1 U mL−1 concen-
10 K. Manibalan, V. Mani, C.-H. Huang, S.-T. Huang and
P.-C. Chang, Analyst, 2015, 140, 6040.
11 (a) P. D. Beer, Chem. Soc. Rev., 1989, 18, 409; (b) P. D. Beer,
P. A. Gale and G. Z. Chen, Coord. Chem. Rev., 1999, 185, 3;
(c) D. Kang, F. Ricci, R. J. White and K. W. Plaxco, Anal.
Chem., 2016, 88, 10452.
12 A. Sagi, J. Rishpon and D. Shabat, Anal. Chem., 2005, 78,
1459.
13 D. R. van Staveren and N. Metzler-Nolte, Chem. Rev., 2004,
104, 5931.
14 Y. Du, B. J. Lim, B. Li, Y. S. Jiang, J. L. Sessler and
A. D. Ellington, Anal. Chem., 2014, 86, 8010.
15 S. Goggins, C. Naz, B. J. Marsh and C. G. Frost, Chem.
Commun., 2015, 51, 561.
16 S. Goggins, E. A. Apsey, M. F. Mahon and C. G. Frost, Org.
Biomol. Chem., 2017, 15, 2459.
17 (a) S. C. Hillier, C. G. Frost, A. T. A. Jenkins, H. T. Braven,
R. W. Keay, S. E. Flower and J. M. Clarkson,
Bioelectrochemistry, 2004, 63, 307; (b) S. C. Hillier,
S. E. Flower, C. G. Frost, A. T. A. Jenkins, R. Keay, H. Braven
and J. M. Clarkson, Electrochem. Commun., 2004, 6, 1227;
(c) B. J. Marsh, L. Hampton, S. Goggins and C. G. Frost,
New J. Chem., 2014, 38, 5260.
trations, where the rate constant for substrate 1, 2.91 × 10−3 s−1
,
is an order of magnitude higher than for substrate 11,
0.14 × 10−3 s−1. The increased steric bulk around the anomeric
position in substrate 11 inhibits the rate of hydrolysis, indicat-
ing the suitability of substrate 1.
In conclusion, we have developed a new ferrocene-based
electrochemical substrate for the detection of β-galactosidase
activity. The substrate with a D-galactopyranoside trigger was
synthesised and was distinguishable from the product electro-
chemically via differential pulse voltammetry. The substrate
was shown to be stable to background hydrolysis, was demon-
strated to be sensitive to low concentrations of β-galactosidase
and shown to be both reproducible and reliable which makes
β-galactosidase sensing applicable to electrochemical point-of-
care biosensors.
18 (a) R. J. Amir, N. Pessah, M. Shamis and D. Shabat, Angew.
Chem., Int. Ed., 2003, 42, 4494; (b) E. Sella and D. Shabat,
J. Am. Chem. Soc., 2009, 131, 9934.
19 D. C. D. Butler and C. J. Richards, Organometallics, 2002,
21, 5433.
20 U mL−1 = Units per millilitre. Where one unit will hydrolyse
1.0 micromole of O-nitrophenyl-β-D-galactoside to
O-nitrophenol and D-galactose per minute at pH 7.3 at 37 °C.
Fig. 4 Substrate 11.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2017