Organic Letters
Letter
(b) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C. J. Am.
Chem. Soc. 2002, 124, 13662−13663. (c) Hashimoto, T.; Hatakeyama,
T.; Nakamura, M. J. Org. Chem. 2012, 77, 1168−1173. (d) Yang, C.-
T.; Zhang, Z.-Q.; Liu, Y.-C.; Liu, L. Angew. Chem., Int. Ed. 2011, 50,
3904−3907.
(9) (a) Negishi, E-i. In Handbook of Organopalladium Chemistry for
Organic Synthesis; Negishi, E-i., de Meijere, A., Eds.; John Wiley &
Sons, Inc.: New York, 2002; Vol. 2, Chapter III. (b) Benderdour, M.;
Bui-Van, T.; Dicko, A.; Belleville, F. J. Trace Elem. Med. Biol. 1998, 12,
2−7.
(10) (a) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Sato, M.;
Suzuki, A. J. Am. Chem. Soc. 1989, 111, 314−321. (b) Liron, F.; Fosse,
C.; Pernolet, A.; Roulland, E. J. Org. Chem. 2007, 72, 2220−2223. For
a review on Suzuki−Miyaura cross-coupling with alkenyl halides, see:
(c) Doucet, H. Eur. J. Org. Chem. 2008, 2008, 2013−2030. For
selected examples of total synthesis using Suzuki−Miyaura cross-
coupling with alkenyl halides, see: (d) Meng, D.; Bertinato, P.; Balog,
A.; Su, D.-S.; Kamenecka, T.; Sorensen, E. J.; Danishefsky, S. J. J. Am.
Chem. Soc. 1997, 119, 10073−10092. (e) Marshall, J. A.; Johns, B. A. J.
Org. Chem. 1998, 63, 7885−7892.
(11) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340−1341.
(12) Molander, G. A.; Argintaru, O. A. Org. Lett. 2014, 16, 1904−
1907.
(13) (a) Brown, H. C.; Scouten, C. G.; Liotta, R. J. Am. Chem. Soc.
1979, 101, 96−99. (b) Colberg, J. C.; Rane, A.; Vaquer, J.; Soderquist,
J. A. J. Am. Chem. Soc. 1993, 115, 6065−6071.
(14) Miyaura, N.; Satoh, M.; Suzuki, A. Tetrahedron Lett. 1986, 27,
3745−3748.
(15) (a) Vechorkin, O.; Proust, V.; Hu, X. L. J. Am. Chem. Soc. 2009,
131, 9756−9766. (b) Vechorkin, O.; Godinat, A.; Scopelliti, R.; Hu, X.
L. Angew. Chem., Int. Ed. 2011, 50, 11777−11781. (c) Di Franco, T.;
Boutin, N.; Hu, X. L. Synthesis 2013, 45, 2949−2958.
(16) Vechorkin, O.; Csok, Z.; Scopelliti, R.; Hu, X. L. Chem. - Eur. J.
2009, 15, 3889−3899.
(17) (a) Breitenfeld, J.; Ruiz, J.; Wodrich, M. D.; Hu, X. L. J. Am.
Chem. Soc. 2013, 135, 12004−12012. (b) Breitenfeld, J.; Wodrich, M.
D.; Hu, X. L. Organometallics 2014, 33, 5708−5715.
(18) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255−263.
(19) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic
Chemistry; University Science Books: Sausalito, CA, 2006.
(20) The term “one pot” is used rather than “cascade” because the
reactions are conducted in the same reaction flask with sequential
additions of reagents. For a discussion of “one-pot” reactions, see:
Vaxelaire, C.; Winter, P.; Christmann, M. Angew. Chem., Int. Ed. 2011,
50, 3605−3607.
(21) For a recent example of Cu-catalyzed hydroalkylation of
terminal alkynes, see: Uehling, M. R.; Suess, A. M.; Lalic, G. J. Am.
Chem. Soc. 2015, 137, 1424−1427. However, this method only works
for primary alkyl and benzyl triflates.
(22) (a) Boeckman, R. K., Jr.; Goldstein, S. W. The total synthesis of
macrocyclic lactones. In The Total Synthesis of Natural Products;
ApSimon, J., Ed.; Wiley: New York, 1988; Vol. 7, pp 1−139. For
comparison, Corey performed the first total synthesis of the
( )-Recifeiolide in 8 steps and 52% overall yield. Mukaiyama realized
this total synthesis in 8 steps and 12% overall yield. (b) Mochizuki, N.;
Yamada, H.; Sugai, T.; Ohta, H. Bioorg. Med. Chem. 1993, 1, 71−75.
The synthesis has 5 steps and a 35% overall yield
(23) Vesonder, R. F.; Stodola, F. H.; Wickerham, L. J.; Ellis, J. J.;
Rohwedder, W. K. Can. J. Chem. 1971, 49, 2029−2032.
(24) Okuma, K.; Hirabayashi, S.-i.; Ono, M.; Shioji, K.; Matsuyama,
H.; Bestmann, H. J. Tetrahedron 1998, 54, 4243−4250. The synthesis
has 6 steps and a 40% overall yield.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental details and characterization data (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work is supported by the Swiss National Science
Foundation (No. 200020_144393/1).
■
REFERENCES
■
́
(1) (a) Alvarez, R.; Vaz, B.; Gronemeyer, H.; de Lera, A. R. Chem.
Rev. 2014, 114, 1−125. (b) Dachavaram, S. S.; Kalyankar, K. B.; Das,
S. Tetrahedron Lett. 2014, 55, 5629−5631. (c) Wicklow, D. T.; Joshi,
B. K.; Gamble, W. R.; Gloer, J. B.; Dowd, P. F. Appl. Environ. Microbiol.
̀
1998, 64, 4482−4484. (d) Bovolenta, M.; Castronovo, F.; Vadala, F.;
Zanoni, G.; Vidari, G. J. Org. Chem. 2004, 69, 8959−8962.
(2) (a) Brase, S.; de Meijere, A. In Metal-Catalyzed Cross-Coupling
̈
Reactions; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: New York,
2004. (b) Heck, R. F. In Comprehensive Organic Synthesis; Trost, B. M.,
Ed.; Pergamon: New York, 1991; Vol. 4, Chapter 4.3. (c) Heck, R. F.
Acc. Chem. Res. 1979, 12, 146−151. (d) Mizoroki, T.; Mori, K.; Ozaki,
A. Bull. Chem. Soc. Jpn. 1971, 44, 581. (e) Beletskaya, I. P.; Cheprakov,
A. V. Chem. Rev. 2000, 100, 3009−3066.
(3) For a recent review on Ni-catalyzed cross-coupling of
nonactivated alkyl halides, see: Hu, X. L. Chem. Sci. 2011, 2, 1867−
1886.
(4) (a) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674−
688. (b) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48,
2656−2670. (c) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004,
346, 1525−1532.
(5) For selected examples of an intermolecular alkyl Heck reaction,
see: (a) Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am.
Chem. Soc. 2002, 124, 6514−6515. (b) Matsubara, R.; Gutierrez, A. C.;
Jamison, T. F. J. Am. Chem. Soc. 2011, 133, 19020−19023. (c) Liu, C.;
Tang, S.; Liu, D.; Yuan, J.; Zheng, L.; Meng, L.; Lei, A. Angew. Chem.,
Int. Ed. 2012, 51, 3638−3641. (d) Zou, Y.; Zhou, J. Chem. Commun.
2014, 50, 3725−3728. (e) McMahon, C. M.; Alexanian, E. J. Angew.
Chem., Int. Ed. 2014, 53, 5974−5977.
(6) For selected examples of an intramolecular alkyl Heck reaction,
see: (a) Firmansjah, L.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 11340−
11341. (b) Bloome, K. S.; McMahen, R. L.; Alexanian, E. J. J. Am.
Chem. Soc. 2011, 133, 20146−20148. (c) Weiss, M. E.; Kreis, L. M.;
Lauber, A.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 11125−
11128. (d) Harris, M. R.; Konev, M. O.; Jarvo, E. R. J. Am. Chem. Soc.
2014, 136, 7825−7828. (e) Parasram, M.; Iaroshenko, V. O.;
Gevorgyan, V. J. Am. Chem. Soc. 2014, 136, 17926−17929.
́
(7) For selected examples, see: for M = Mg: (a) Guerinot, A.;
Reymond, S.; Cossy, J. Angew. Chem., Int. Ed. 2007, 46, 6521−6524.
(b) Cahiez, G.; Duplais, C.; Moyeux, A. Org. Lett. 2007, 9, 3253−3254.
For M = Si: (c) Dai, X.; Strotman, N. A.; Fu, G. C. J. Am. Chem. Soc.
2008, 130, 3302−3303. For M = Zn: (d) Hatakeyama, T.; Nakagawa,
N.; Nakamura, M. Org. Lett. 2009, 11, 4496−4499. (e) Choi, J.; Fu, G.
C. J. Am. Chem. Soc. 2012, 134, 9102−9105. For examples of total
synthesis using alkenyl nucleophiles, see: (f) Nicolaou, K. C.; Bulger,
P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442−4489.
(8) For examples with M = B, see: (a) Netherton, M. R.; Dai, C.;
Neuschutz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099−10100.
̈
D
Org. Lett. XXXX, XXX, XXX−XXX