9-Mesityl-10-methylacridinium Cation
A R T I C L E S
radical pair against charge recombination. In this way, despite
the synthetic challenge, molecular triads, tetrads, pentads, etc.
have become an essential part of our strategy to engineer
intelligent molecular photonic devices.10
nitrile at ambient temperature, but this process becomes first
order at higher temperatures and in frozen benzonitrile.16 We
have questioned these latter results17 and suggested that the
observed EPR signal might arise from a sacrificial photoredox
process involving trace impurities in the solvent. Such behavior
might also explain other results where long-lived photoredox
products have been observed under unusual circumstances.18
The significance of the results reported by Fukuzumi et al.16
cannot be overstated. In particular, the ability to stabilize a
simple molecular dyad against charge recombination, nuclear
tunneling, quantum mechanical effects, and triplet formation
would open the way to construct all manner of fascinating
optoelectronic devices without the need for elaborate synthesis.
Already, this dyad has been proposed as an improved sensitizer
for dye-injection solar cells,19 as an olefin oxygenation photo-
catalyst,20 and as a light harvester for photovoltaic cells.21
Several questions have to be asked of the present system,
however, before markedly changing strategy. A major issue
concerns the lack of triplet formation since closely related 9-aryl-
10-methylacridinium ions are known to exhibit efficient inter-
system crossing to the triplet manifold.22 Such donor-acceptor
systems also display charge-transfer fluorescence22,23 that decays
on the nanosecond time scale. Of course, the mesityl group is
held orthogonal to the acridinium nucleus, and this geometry
might have profound implications for the extent of electronic
coupling between the redox partners. It seems prudent, therefore,
to conduct a detailed spectroscopic investigation of this system
before drawing too many conclusions. We now describe the
results of such an examination and find that although the
9-mesityl-10-methylacridinium cation displays some interesting
photophysical properties these are very different from those
reported by Fukuzumi et al.16 and, in particular, do not include
formation of a long-lived charge-transfer state.
Apart from thermodynamic considerations, there are other
possible ways to decrease the rate of charge recombination in
simple molecular dyads.7 For example, concepts based on spin
restriction rules,11 conformational gating,12 applied magnetic
fields,13 orientational effects,14 and orbital symmetry15 have been
considered as ways to avoid the time-consuming synthesis
needed to produce the multicomponent arrays. The effects of
these approaches tend to be limited and/or of restricted ap-
plicability.7 A notable exception to this generic behavior,
however, was reported recently. Thus, Fukuzumi et al.16
described a donor-acceptor compound, namely the 9-mesityl-
10-methylacridinium ion, that exhibits truly remarkable proper-
ties. This simple system is said to produce a photoredox state
by way of a charge-shift reaction, in 98% yield, that survives
for more than 2 h in benzonitrile at 203 K. The charge-transfer
state is believed to store 2.37 eV and, because the reorganization
energy for reforming the ground state is only 0.79 eV, classical
Marcus theory predicts that the activation energy for this process
is unusually high. Bimolecular charge shift is noted in aceto-
(8) (a) Gust, D.; Moore, T. A.; Moore, A. L.; Macpherson, A. N.; Lopez, A.;
DeGraziano, J. M.; Gouni, I.; Bittersman, E.; Seely, G. R.; Gao, F.; Nieman,
R. A.; Ma, X. C.; Demanche, L.; Luttrell, D. K.; Lee, S. J.; Perrigan, P. K.
J. Am. Chem. Soc. 1993, 115, 11141. (b) Imahori, H.; Guldi, D. M.; Tamaki,
K.; Yoshida, Y.; Luo, C.; Sakata, Y.; Fukuzumi, S. J. Am. Chem. Soc.
2001, 123, 6617. (c) Kodis, G.; Liddell, P. A.; de la Garza, L.; Lin, S.;
Moore, A. L.; Moore, T. A.; Gust, D. J. Phys. Chem. A 2002, 106, 2036.
(d) Lukas, A. S.; Miller, S. E.; Wasielewski, M. R. J. Phys. Chem. B 2000,
104, 931. (e) Osuka, A.; Okada, T.; Taniguchi, S.; Nozaki, K.; Ohno, T.;
Mataga, N. Tetrahedron Lett. 1995, 36, 5781. (f) Bell, T. D. M.; Jolliffe,
K. A.; Ghiggino, K. P.; Oliver, A. M.; Shephard, M. J.; Langford, S. J.;
Paddon-Row, M. N. J. Am. Chem. Soc. 2000, 122, 10661.
(9) (a) Wasielewski, M. R. Chem. ReV. 1992, 92, 435. (b) Maruyama, K.;
Osuka, A.; Mataga, N. Pure Appl. Chem. 1994, 66, 867. (c) Harriman, A.;
Sauvage, J.-P. Chem. Soc. ReV. 1996, 41. (d) Sakata, Y.; Imahori, H.; Tsue,
H.; Higashida, S.; Akiyama, T.; Yoshizawa, E.; Aoki, M.; Yamada, K.;
Hagiwara, K.; Taniguchi, S.; Okada, T. Pure Appl. Chem. 1997, 69, 1951.
(e) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34, 40. (f)
Paddon-Row, M. N. Aust. J. Chem. 2003, 56, 729.
(10) (a) Linke, M.; Chambron, J.-C.; Heitz, V.; Sauvage, J.-P.; Encinas, S.;
Barigelletti, F.; Flamigni, L. J. Am. Chem. Soc. 2000, 122, 11834. (b)
Haycock, R. A.; Hunter, C. A.; James, D. A.; Micheksen, U.; Sutton, L.
R. Org. Lett. 2000, 2, 2435. (c) Kim, Y. H.; Jeoung, D. H.; Kim, D.; Jeoung,
S. C.; Cho, H. S.; Kim, S. K.; Aratani, N.; Osuka, A. J. Am. Chem. Soc.
2001, 123, 76. (d) Loewe, R. S.; Lammi, R. K.; Diers, J. R.; Kirmaier, C.;
Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Mater. Chem. 2002, 12, 1530.
(11) (a) Smit, K. J.; Warman, J. M. J. Lumin. 1988, 42, 149. (b) Karpiuk, J.
Phys. Chem. Chem. Phys. 2003, 5, 1078. (c) Anglos, D.; Bindra, V.; Kuki,
A. J. Chem. Soc., Chem. Commun. 1994, 2, 213. (d) van Dijk, S. I.; Groen,
C. P.; Hartl, F.; Brouwer, A. M.; Verhoeven, J. W. J. Am. Chem. Soc.
1996, 118, 8425. (e) Hviid, L.; Brouwer, A. M.; Paddon-Row, M. N.;
Verhoeven, J. W. Chem. Phys. Chem. 2001, 232. (f) Hviid, L.; Bouwman,
W. G.; Paddon-Row, M. N.; Verhoeven, J. W.; van Ramesdonk, H. J.;
Brouwer, A. M. Photochem. Photobiol. Sci. 2003, 2, 995. (g) Hviid, L.;
Verhoeven, J. W.; Brouwer, A. M.; Paddon-Row, M. N.; Yang, J.; George,
M. W. Photochem. Photobiol. Sci. 2004, 3, 246.
(12) (a) Osyczka, A.; Moser, C. C.; Daldal, F.; Dutton, P. L. Nature 2004, 427,
607. (b) Andreasson, J.; Kyrychenko, A.; Martensson, J.; Albinsson, B.
Photochem. Photobiol. Sci. 2002, 1, 111. (c) Davis, W. B.; Ratner, M. A.;
Wasielweski, M. R. J. Am. Chem. Soc. 2001, 123, 7877.
(13) (a) Wolff, H.-J.; Burssner, D.; Steiner, U. E. Pure Appl. Chem. 1995, 67,
167. (b) Schaffner, E.; Fischer, H. J. Phys. Chem. 1996, 100, 1657. (c)
Sinks, L. E.; Weiss, E. A.; Giaimo, J. M.; Wasielewski, M. R. Chem. Phys.
Lett. 2005, 404, 244.
(14) (a) Tsukahara, K.; Ueda, R. Bull. Chem. Soc. Jpn. 2003, 76, 561. (b)
Korchowiec, J. Int. J. Quantum Chem. 2005, 101, 714. (c) Sakata, Y.;
Imahori, H.; Tsue, H.; Higashida, S.; Akiyama, T.; Yoshizawa, E.; Aoki,
M.; Yamada, K.; Hagiwara, K.; Taniguchi, S.; Okada, T. Pure Appl. Chem.
1997, 69, 1951. (d) Asano-Someda, M.; Jinmon, A.; Toyama, N.; Kaizu,
Y. Inorg. Chim. Acta 2001, 324, 347.
(15) (a) Zeng, Y.; Zimmt, M. B. J. Am. Chem. Soc. 1991, 113, 5107. (b) Zeng,
Y.; Zimmt, M. B. J. Phys. Chem. 1992, 96, 8395. (c) Oliver, A. M.; Paddon-
Row, M. N.; Kroon, J.; Verhoeven, J. W. Chem. Phys. Lett. 1992, 191,
371.
(16) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.;
Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600.
Experimental Section
All chemicals were purchased commercially and, unless stated
otherwise, were used as received. Solvents for synthetic procedures
were dried by standard literature methods before being distilled and
stored under nitrogen over 4 Å molecular sieves. N,N′-Dimethyl-4,4′-
(17) Benniston, A. C.; Harriman, A.; Li, P.; Rostron, J. P.; Verhoeven, J. W.
Chem. Commun. 2005, 2701.
(18) Guldi, D. M.; Imahori, H.; Tamaki, K.; Kashiwagi, Y.; Yamada, H.; Sakata,
Y.; Fukuzumi, S. J. Phys. Chem. A 2004, 108, 541.
(19) Hasobe, T.; Hattori, S.; Kamat, P. V.; Wada, Y.; Fukuzumi, S. J. Mater.
Chem. 2005, 15, 372.
(20) (a) Kotani, H.; Ohkubo, K.; Fukuzumi, S. J. Am. Chem. Soc. 2004, 126,
15999. (b) Ohkubo, K.; Nanjo, T.; Fukuzumi, S. Org. Lett. 2005, 7, 4265.
(21) Hasobe, T.; Hattori, S.; Kotani, H.; Ohkubo, K.; Hosomizu, K.; Imahori,
H.; Kamat, P. V.; Fukuzumi, S. Org. Lett. 2004, 6, 3103.
(22) van Willigen, H.; Jones, G., II; Farahat, M. S. J. Phys. Chem. 1996, 100,
3312.
(23) Jones, G., II; Farahat, M. S.; Greenfield, S. R.; Gosztola, D. J.; Wasielewski,
M. R. Chem. Phys. Lett. 1994, 229, 40.
9
J. AM. CHEM. SOC. VOL. 127, NO. 46, 2005 16055