Communications
catalyst 24 (Scheme 3; Cy = cyclohexyl).[17] Although catalytic
hydrogenation of the alkene 25 under standard conditions
afforded the dehalogenated product by overreduction, dii-
mide reduction[18] provided the target compound 3 without
dehalogenation. The respective spectra of the synthetic
compound 3 ([a]2D3 = + 51.3 (c = 0.41, CHCl3)), prepared
from the R alcohol 10, were identical to those of the natural
product ([a]D20 = + 53.0 (c = 0.625, CHCl3)).[2,6,7] Thus, it was
found that the hitherto unknown absolute configuration of
(+)-intricatetraol (1) is shown by the structural formula 3.[19]
In conclusion, we have completed the first asymmetric
total synthesis of the marine bromochloro-functionalized
triterpene polyether (+)-intricatetraol (1). Our synthesis
features the enantioselective construction of the unique
vicinal bromochloro functionality in an approach that may
be applied to the synthesis of other bromochloro compounds,
such as halomon (2), and an efficient olefin-metathesis
strategy that takes the intrinsic molecular symmetry of the
natural product into consideration. The total synthesis
resulted in the assignment of the absolute configuration of
intricatetraol (1), which is difficult to determine by other
means. Further contributions to structure elucidation by
organic synthesis are in progress.
Received: September 15, 2006
Revised: October 16, 2006
Published online: December 27, 2006
Keywords: asymmetric synthesis · configuration determination ·
.
halogen compounds · polyethers · terpenoids
Scheme 3. Reagents and conditions: a) methanesulfonyl chloride, pyri-
dine, CH2Cl2, 08C!RT, 14 h; then K2CO3, MeOH, RT, 3 h, 90%;
b) Li2[NiBr4], THF, RT, 56 h, 76%; c) K2CO3, MeOH, RT, 1 h, 92%;
d) SOCl2, DMPU, 08C, 30 min; e) HCl, MeOH, RT, 66 h, 55%
(2 steps); f) 24, CH2Cl2, 408C, 7 h, 86%; g) (KOCON)2, AcOH, MeOH,
RT, 70 h, 56%. DMPU=1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)pyrimidi-
none.
[1] For reviews, see: a) J. D. Connolly, R. A. Hill, Nat. Prod. Rep.
2003, 20, 640 – 660; b) J. W. Blunt, B. R. Copp, M. H. G. Munro,
P. T. Northcote, M. R. Prinsep, Nat. Prod. Rep. 2004, 21, 1 – 49.
[2] M. Suzuki, Y. Matsuo, S. Takeda, T. Suzuki, Phytochemistry
1993, 33, 651 – 656.
[3] For the assignment of the absolute configurations of oxasqua-
lenoids by total synthesis, see: a) H. Kigoshi, M. Ojika, Y.
Shizuri, H. Niwa, K. Yamada, Tetrahedron 1986, 42, 3789 – 3792;
b) Y. Morimoto, T. Iwai, T. Kinoshita, J. Am. Chem. Soc. 2000,
122, 7124 – 7125; c) Z. Xiong, E. J. Corey, J. Am. Chem. Soc.
2000, 122, 9328 – 9329; d) Y. Morimoto, T. Iwai, T. Kinoshita,
Tetrahedron Lett. 2001, 42, 6307 – 6309; e) H. Kigoshi, T. Itoh, T.
Ogawa, K. Ochi, M. Okada, K. Suenaga, K. Yamada, Tetrahe-
dron Lett. 2001, 42, 7461 – 7464; f) Y. Morimoto, M. Takaishi, T.
Iwai, T. Kinoshita, H. Jacobs, Tetrahedron Lett. 2002, 43, 5849 –
5852; g) Y. Morimoto, Y. Nishikawa, M. Takaishi, J. Am. Chem.
Soc. 2005, 127, 5806 – 5807.
[4] For the total synthesis of halomon (2), see: a) T. Schlama, R.
Baati, V. Gouverneur, A. Valleix, J. R. Falck, C. Mioskowski,
Angew. Chem. 1998, 110, 2226 – 2228; Angew. Chem. Int. Ed.
1998, 37, 2085 – 2087; b) T. Sotokawa, T. Noda, S. Pi, M. Hirama,
Angew. Chem. 2000, 112, 3572 – 3574; Angew. Chem. Int. Ed.
2000, 39, 3430 – 3432.
[5] a) N. Ichikawa, Y. Naya, S. Enomoto, Chem. Lett. 1974, 1333 –
1336; b) B. J. Burreson, F. X. Woolard, R. E. Moore, Chem. Lett.
1975, 1111 – 1114; c) R. W. Fuller, J. H. Cardellina II, Y. Kato,
L. S. Brinen, J. Clardy, K. M. Snader, M. R. Boyd,J. Med. Chem.
1992, 35, 3007 – 3011; d) R. W. Fuller, J. Med. Chem. 1994, 37,
4407 – 4411; see Supporting Information.
Scheme 4. Possible mechanism for the chlorination of bromohydrins
20 and 22.
The dimerization of fragment 21 was carried out in 86%
yield by olefin metathesis with the Grubbs second-generation
[6] Y. Morimoto, M. Takaishi, N. Adachi, T. Okita, H. Yata, Org.
Biomol. Chem. 2006, 4, 3220 – 3222.
1134
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 1132 –1135