C O M M U N I C A T I O N S
the longer molecular axis perpendicular to this plane (cf. Figure
1). The interlayer distance in the LCs and crystals of 1-4 ((001)
reflections at 195 °C) increases linearly as the alkyl chain length
increases (from 1 to 4 and 3.48 to 1.80 nm; Figure S3). We
therefore conclude that the alkyl chains are sandwiched between
the fullerene layers, as illustrated in Figure 1. We ascribe this
microphase segregation to the mesogens’ bow-tie molecular
shape and the incompatibility of the alkyl chains with the
fullerene core. Note that the latter contributed to the formation
of one-dimensional stacking of the conical C60Ar5X molecules.4
Compounds 1-4, which bear an emissive 40π-electron [10]cy-
clophenacene system, exhibit photoluminescence (PL).6 As shown
in Figure 2d, compound 1 exhibits intense absorption bands at <400
nm, with a shoulder at 340 nm, and some weak absorption in the
visible ranges (maxima at 428 and 456 nm) that are characteristic
of the [10]cyclophenacene moiety. Upon excitation of compound
1 at 366 nm in cyclohexane, we observed two intense emission
peaks with a maximum at 568 nm and with a PL quantum yield of
Φsol ) 0.21 (absolute measurement), which is the highest value
thus far reported for fullerene derivatives. For the drop-casted film,
we also observed an emission at 563 nm with a comparable quantum
yield of Φfilm ) 0.18, which strongly suggests that the cyclophen-
acene chromophores are spatially separated from each other in the
LCs and do not suffer much from self-quenching in the excited
state.
once a way is found to improve the ordering, the macroscopic
emissive property of 1-4 will generate interesting applications
when combined with organic light-emitting diode technology.14
Acknowledgment. We thank MEXT (KAKENHI to E.N., No.
18105004) and the Global COE Program for Chemistry Innovation.
Supporting Information Available: Synthesis, DSC, optical tex-
tures, XRD, and anisotropic photoluminescence. This material is
References
(1) (a) Goodby, J. W. Curr. Opin. Solid State Mater. Sci. 1999, 4, 361. (b)
Goodby, J. W.; Bruce, D. W.; Hird, M.; Imrie, C.; Neal, M. J. Mater.
Chem. 2001, 11, 2631. (c) Kato, T.; Mizoshita, N.; Kishimoto, K. Angew.
Chem., Int. Ed. 2006, 45, 38. (c) Rudick, J. G.; Percec, V. Acc. Chem.
Res. 2008, 41, 1641. (d) Tschierske, C. Nature. 2002, 419, 681.
(2) (a) Kato, T. Science. 2002, 295, 2414. (b) Tschierske, C. J. Mater. Chem.
2001, 11, 2647. (c) Reddy, R. A.; Tschierske, C. J. Mater. Chem. 2006,
16, 907.
(3) (a) Chuard, T.; Deschenaux, R. J. Mater. Chem. 2002, 12, 1944. (b)
Deschenaux, R.; Donnio, B.; Guillon, D. New J. Chem. 2007, 31, 1064.
(c) Lenoble, J.; Campidelli, S.; Maringa, N.; Donnio, B.; Guillon, D;
Yevlampieva, N.; Deschenaux, R. J. Am. Chem. Soc. 2007, 129, 9941. (d)
Nakanishi, T.; Shen, Y.; Wang, J.; Yagai, S.; Funahashi, M.; Kato, T.;
Fernandes, P.; Mo¨hwald, H.; Kurth, D. G. J. Am. Chem. Soc. 2008, 130,
9236. (e) Li, W.-S.; Yamamoto, Y.; Fukushima, T.; Saeki, A.; Seki, S.;
Tagawa, S.; Masunaga, H.; Sasaki, S.; Takata, M.; Aida, T. J. Am. Chem.
Soc. 2008, 130, 8886.
(4) (a) Sawamura, M.; Kawai, K.; Matsuo, Y.; Kanie, K.; Kato, T.; Nakamura,
E. Nature 2002, 419, 702. (b) Matsuo, Y.; Muramatsu, A.; Hamasaki, R.;
Mizoshita, N.; Kato, T.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 432.
(c) Matsuo, Y.; Muramatsu, A.; Kamikawa, Y.; Kato, T.; Nakamura, E.
J. Am. Chem. Soc. 2006, 128, 9586. (d) Zhong, Y.-W.; Matsuo, Y.;
Nakamura, E. J. Am. Chem. Soc. 2007, 129, 3052. (e) Matsuo, Y.;
Nakamura, E. Chem. ReV. 2008, 108, 3016.
A chromophore emits light polarized along its transition
moment;13a therefore, if a chromophore is spatially oriented in the
bulk, the bulk will emit light anisotropically. This is exemplified
by the GFP chromophore, which is oriented along the long crystal
axis, yielding a highly polarized emission with a ratio of parallel
(5) (a) Campidelli, S.; Brandmu¨ller, T.; Hirsch, A.; Saez, I. M.; Goodby, J. W.;
Deschenaux, R. Chem. Commun. 2006, 4282. (b) Mamlouk, H.; Heinrich,
B.; Bourgogne, C.; Donnio, B.; Guillon, D.; Felder-Flesch, D. J. Mater.
Chem. 2007, 17, 2199. (c) Gottis, S.; Kopp, C.; Allard, E.; Deschenaux,
R. HelV. Chim. Acta 2007, 90, 957.
(I|, 0°) to perpendicular (I⊥, 90°) emission that is close to I0°/I90°
)
10.13b In the smectic LC of 1, the emissive cyclophenacene group
is rigidly embedded in the lamellar layers, (Figure 1), and hence
will cause anisotropic light emission from the bulk LCs if there is
any long-range ordering of the lamellar structure in the bulk.
Indeed, after settling a rotatable polarizer between the sample
and the detector, a thermally annealed LC film of 1 showed
anisotropic light emission with a ratio of 0.79 (I0°/I90°), and when
it was uniaxially sheared, the ratio changed, albeit modestly, to
0.40 (366 nm excitation) (Figure S10). Such anisotropic emission
and its change upon the application of a mechanical force must
have occurred because of the long-range alignment of the cyclo-
phenacene chromophore in the LC film.
(6) For deca-adducts: (a) Nakamura, E.; Tahara, K.; Matsuo, Y.; Sawamura,
M. J. Am. Chem. Soc. 2003, 125, 2834. (b) Matsuo, Y.; Tahara, K.;
Sawamura, M.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 8725. (c)
Matsuo, Y.; Tahara, K.; Morita, K.; Matsuo, K.; Nakamura, E. Angew.
Chem., Int. Ed. 2007, 46, 2844. (d) Zhang, X.; Matsuo, Y.; Nakamura, E.
Org. Lett. 2008, 10, 4145. (e) Matsuo, Y. Bull. Chem. Soc. Jpn. 2008, 81,
320.
(7) (a) Cavero, E.; Uriel, S.; Romero, P.; Serrano, J. L.; Gimenez, R. J. Am.
Chem. Soc. 2007, 129, 11608. (b) Kishimura, A.; Yamashita, T.; Yamagu-
chi, K.; Aida, T. Nat. Mater. 2005, 4, 546. (c) Sentman, A. C.; Gin, D. L.
AdV. Mater. 2001, 13, 1398. (d) Carson, T. D.; Seo, W.; Tam-Chang, S.-
W.; Casey, S. M. Chem. Mater. 2003, 15, 2292.
(8) O’Neill, M.; Kelly, S. M. AdV. Mater. 2003, 15, 1135.
(9) (a) Grell, M.; Bradley, D. D. C. AdV. Mater. 1999, 11, 895. (b) Tanaka,
H.; Yasuda, T.; Fujita, K.; Tsutsui, T. AdV. Mater. 2006, 18, 2230.
(10) Hoffmann, R. Inter. J. Phil. Chem. 2003, 9, 7.
(11) For hexa-adducts (Φ ) 0.024), see: (a) Schick, G.; Levitus, M.; Kvetko,
L.; Johnson, B. A.; Lamparth, I.; Lunkwitz, R.; Ma, B.; Khan, S. I.; Garcia-
Garibay, M. A.; Rubin, Y. J. Am. Chem. Soc. 1999, 121, 3246. (b)
Hutchison, K.; Gao, J.; Schick, G.; Rubin, Y.; Wudl, F. J. Am. Chem. Soc.
1999, 121, 5611.
(12) Onouchi, H.; Okoshi, K.; Kajitani, T.; Sakurai, S.; Nagai, K.; Kumaki, J.;
Onitsuka, K.; Yashima, E. J. Am. Chem. Soc. 2008, 130, 229.
(13) (a) Lakowicz, J. R. Principles of Fluorescence Spectropscopy, 3rd ed.:
Springer: New York, 2006. (b) Inoue´, S.; Shimomura, O.; Goda, M.;
Shribak, M.; Tran, P. T. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4272.
(14) Matsuo, Y.; Sato, Y.; Hashiguchi, M.; Matsuo, K.; Nakamura, E. AdV.
Funct. Mater. 2009, 19, 2224.
In conclusion, decaaryl[60]fullerene molecules (Ar5MeC60Ar5Me)
1-4 display a unique bow-tie shape, which is found in the central
fullerene part forming a layered structure whose longer molecular
axis is perpendicular to the plane. This molecular orientation causes
the alignment of the emissive [10]cyclophenacene rings in the plane
of the layer and allows the bulk LC phase to emit light anisotro-
pically due to the presence of ordered lamellas in the smectic phase.
It is apparent that such long-range ordering is far from perfect,
and hence, the ratio of anisotropic emission remains low. However,
JA907908M
9
J. AM. CHEM. SOC. VOL. 131, NO. 47, 2009 17059