Journal of the American Chemical Society
COMMUNICATION
Scheme 4. Azidation Reactions Involving Rearrangement of
the Radical Intermediates
alkenes. The versatility of the azides, which can be easily
prepared, makes this reaction particularly suitable for applica-
tions in natural product synthesis.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures,
b
characterization data, and copies of H and 13C NMR spectra
1
of all new compounds. This material is available free of charge via
’ AUTHOR INFORMATION
Corresponding Author
Scheme 5. Proposed Mechanism
’ ACKNOWLEDGMENT
This work was supported by the Swiss National Science
Foundation (Grant 20-135087). We thank BASF Corporation
for the generous gift of boron reagents.
’ REFERENCES
(1) (a) Doye, S. Sci. Synth. 2009, 40a, 241. (b) M€uller, T. E.;
Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108,
3795.
(2) Beller, M.; Breindl, C.; Eichberger, M.; Hartung, C. G.; Seayad,
J.; Thiel, O. R.; Tillack, A.; Trauthwein, H. Synlett 2002, 1579.
(3) (a) Waser, J.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2005,
127, 8294. (b) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am.
Chem. Soc. 2006, 128, 11693.
(4) (a) Hesp, K. D.; Stradiotto, M. ChemCatChem 2010, 2, 1192.
(b) Utsunomiya, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 2702.
(5) (a) Kemper, J.; Studer, A. Angew. Chem., Int. Ed. 2005, 44, 4914.
(b) Guin, J.; Fr€ohlich, R.; Studer, A. Angew. Chem., Int. Ed. 2008, 47, 779.
(c) Guin, J.; M€uck-Lichtenfeld, C.; Grimme, S.; Studer, A. J. Am. Chem.
Soc. 2007, 129, 4498.
Scheme 6. Sequential HydroborationÀAzidationÀ1,3-Di-
polar Cycloaddition Reaction
(6) Markovnikov addition of HN3, TMSN3, and NaN3 to olefins has
been reported but is limited to the formation of azides resulting
from stable tertiary and benzylic carbocations. See: (a) Hassner, A.;
Fibiger, R.; Andisik, D. J. Org. Chem. 1984, 49, 4237. (b) Breton, G. W.;
Daus, K. A.; Kropp, P. J. J. Org. Chem. 1992, 57, 6646. (c) Sreekumar, R.;
Padmakumar, R.; Rugmini, P. Chem. Commun. 1997, 1133.
(7) (a) Br€ase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew.
Chem., Int. Ed. 2005, 44, 5188.(b) Organic Azides: Syntheses and
Applications; Br€ase, S., Banert, K., Eds.; Wiley: Chichester, U.K., 2010.
(8) Suzuki, A.; Dhillon, R. S. Top. Curr. Chem. 1986, 130, 23.
(9) (a) Suzuki, A.; Sono, S.; Itoh, M.; Brown, H. C.; Midland, M. M.
J. Am. Chem. Soc. 1971, 93, 4329. (b) Erdik, E.; Ay, M. Chem. Rev. 1989,
89, 1947. (c) Carboni, B.; Vaultier, M. Bull. Soc. Chim. Fr. 1995,
132, 1003. (d) Brown, H. C.; Midland, M. M.; Levy, A. B.; Suzuki, A.;
Sono, S.; Itoh, M. Tetrahedron 1987, 43, 4079. (e) Brown, H. C.; Kim,
K. W.; Srebnik, M.; Singaram, B. Tetrahedron 1987, 43, 4071.
(10) (a) Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1987, 109, 7151.
(b) Felpin, F. X.; Girard, S.; Vo-Thanh, G.; Robins, R. J.; Villieras, J.;
Lebreton, J. J. Org. Chem. 2001, 66, 6305. (c) Salmon, A.; Carboni, B.
J. Organomet. Chem. 1998, 567, 31.
starting alkyl radical and a boronic ester. The radical reacts with
benzenesulfonyl azide to give the alkyl azide and a benzenesul-
fonyl radical, which propagates the chain by homolytic substitu-
tion of the starting B-alkylcatecholborane. This last step produces
1 equiv of PhSO2BCat. Decomposition of PhSO2BCat may be
the origin of the thioethers observed when the reaction was run
in benzene and DCE (see above). The exact nature of the
sulfurizing agent is unknown.
A sequential reaction involving the hydroborationÀazidation
and a Cu(I)-mediated 1,3-dipolar cycloaddition24 with 3-phe-
nylprop-1-yne was investigated next (Scheme 6). The reaction
with cyclohexene afforded 4-benzyl-1-cyclohexyl-1H-1,2,3-tria-
zole (19) in 75% overall yield, confirming that the moderate yield
of 57% observed in the azidation reaction leading to 4
(Scheme 3) resulted from the volatility of this product.
In conclusion, we have developed an unprecedented reaction
between B-alkylcatecholborane and benzenesulfonyl azide that
can be applied to the efficient hydroazidation of alkenes. The
regioselectivity is controlled by the hydroboration and
corresponds in most cases to a formal anti-Markovnikov regios-
electivity. This procedure is applicable to a wide range of alkenes
and gives excellent results with mono-, di-, and trisubstituted
(11) (a) Brown, H. C.; Midland, M. M.; Levy, A. B. J. Am. Chem. Soc.
1973, 95, 2394. (b) Brown, H. C.; Midland, M. M.; Levy, A. B. J. Am.
Chem. Soc. 1972, 94, 2114.
(12) (a) Jigajinni, V. B.; Pelter, A.; Smith, K. Tetrahedron Lett. 1978,
19, 181. (b) Yang, R. Y.; Dai, L. X. Synthesis 1993, 481. (c) Akimoto, I.;
Suzuki, A. Synth. Commun. 1981, 11, 475. (d) Genet, J. P.; Hajicek, J.;
Bischoff, L.; Greck, C. Tetrahedron Lett. 1992, 33, 2677. (e) Mueller,
R. H. Tetrahedron Lett. 1976, 17, 2925.
13892
dx.doi.org/10.1021/ja2054989 |J. Am. Chem. Soc. 2011, 133, 13890–13893