G. S. Minhas et al. / Bioorg. Med. Chem. Lett. 16 (2006) 3891–3895
3895
Table 2. Calculated docking energies of macrocyclic ligands with a G-
quadruplex
10. Karlseder, J.; Smogorzewska, A.; de Lange, T. Science
2002, 295, 2446.
a
Edock (kcal/mol)
11. Qi, H.; Li, T.-K.; Nur-E-Kamal, A.; Liu, L. F. J. Biol.
Chem. 2003, 178, 15136.
12. White, L. K.; Wright, W. E.; Shay, J. W. Trends
Biotechnol. 2001, 19, 114.
13. Neidle, S.; Read, M. A. Biopolymers 2001, 56, 195.
14. Shin-ya, K.; Wierzba, K.; Matsuo, K.; Ohtani, T.;
Yamada, Y.; Furihata, K.; Hayakawa, Y.; Seto, H. J.
Am. Chem. Soc. 2001, 123, 1262.
Macrocycle
No. of oxazoles
9a
11
4
6
6
7
7
7
ꢀ4.1
ꢀ8.4
ꢀ9.1
ꢀ9.2
ꢀ9.8
ꢀ9.7
18
16
17
(R)-Telomestatin
a Docking was performed using the Lamarckian Genetic Algorithm24
in Autodock 3.0.5. Edock = EVDW + Eelec + Eint with more negative
values signifying a stronger binding energy. An X-ray crystal struc-
ture of a parallel G-quadruplex derived from human telomeric DNA
(1KF1.pdb) was used as the receptor for these studies.3 Macrocyclic
ligands were constructed and refined using Sybyl (Tripos, Inc.).
15. Kim, M. Y.; Vankayalapati, H.; Shin-ya, K.; Wierzba, K.;
Hurley, L. H. J. Am. Chem. Soc. 2002, 124, 2098.
16. Nakajima, A.; Tauchi, T.; Sashida, G.; Sumi, M.; Abe, K.;
Yamamoto, K.; Ohyashiki, J. H.; Ohyashiki, K. Leukemia
2003, 17, 560.
17. Phillips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams,
D. R. Org. Lett. 2000, 2, 1165.
18. Williams, D. R.; Lowder, P. D.; Gu, Y.-G.; Brooks, D. A.
Tetrahedron Lett. 1997, 38, 331.
Gasteiger–Huckel charges were used on the ligands25 and Kollman
¨
charges were used on the G-quadruplex.26
19. Castro, B.; Dormoy, J. R.; Evin, G.; Selve, C. Tetrahedron
Lett. 1975, 1219.
G-quadruplex DNA but not to duplex DNA. These
compounds also exhibit moderate levels of cytotoxic
activity against human lymphoblastoma and murine
leukemia.
20. The structures of all compounds were elucidated using 1H
(200 MHz) and 13C NMR (50 MHz) in CDCl3. Results are
reported as ppm downfield from internal TMS. Com-
1
pound 9a: H NMR d 8.15 (s, 4H), 7.27 (d, 4H, J = 9.4),
5.26 (m, 4H), 2.34 (m, 4H), 1.08 (d, 12H, J = 6.6), 0.98 (d,
12H, J = 6.6); 13C NMR d 163.8, 159.8, 141.6, 135.8, 51.7,
32.9, 19.0, 18.7; HRMS (M+Li+) calcd for C32H40N8O8
(Li), 671.3129; found, 671.3148.
Acknowledgments
This study was supported by NIH Grants CA098127
(E.J.L.) and CA097123(D.S.P.) and American Cancer
Society Grant RSG-99-153-04-CDD (D.S.P.). Mass
spectrometry was provided by the Washington Universi-
ty Mass Spectrometry Resource with support from the
NIH National Center for Research Resources (Grant
No. P41RR0954). The authors thank Dr. Michael A.
Grayson of Washington University for helpful discus-
sions relating to elucidation of the structure of com-
pound 18 and Angela Liu of UMDNJ for performing
the cytotoxicity assays.
1
Compound 11: H NMR d 8.51 (d, 2H, J = 8), 8.20 (m,
6H), 5.30 (dd, 2H, J = 8.5), 2.40 (m, 2H), 1.04 (d, 6H,
J = 7), 0.98 (d, 6H, J = 7); 13C NMR d 163.7, 159.1, 155.3,
153.8, 140.0, 138.2, 137.6, 136.2, 130.2, 128.8, 52.3, 33.2,
17.7, 17.5; HRMS (M+H+) calcd for C28H24N8O8(H+),
601.1795; found, 601.1808.
1
Compound 16: H NMR d 8.66 (d, 1H, J = 9), 8.21, 8.18,
8.16, 8.15, 8.04 (s, 6H), 5.74 (dd, 1H, J = 5,9), 5.33 (dd,
1H, J = 5,9), 4.74–4.58 (m, 2H), 2.38 (heptet, 1H, J = 7),
1.07 (d, 3H, J = 7), 1.00 (d, 3H, J = 7); 13C NMR d 163.8,
159.8, 159.1, 159.0, 155.0, 154.9, 153.9, 140.2, 139.5, 138.4,
137.7, 137.6, 137.0, 136.3, 130.4, 130.3, 130.0, 129.1, 128.7,
70.3, 62.5, 52.1, 33.0, 17.6, 17.4; HRMS (M+Li+) calcd for
C26H18N8O8(Li), 577.1408; found, 577.1389.
Compound 18: 1H NMR d 11.17 (s, 1H), 8.50 (d, 1H,
J = 8), 8.47, 8.45 (s, 2H), 8.27, 8.26, 8.25, 8.245 (s, 4H),
5.33 (dd, 1H, J = 8,4), 2.42 (m, 1H), 1.04 (d, 3H, J = 7),
0.93 (d, 3H, J = 7); 13C NMR d 163.5, 158.9, 156.7, 155.6,
154.3, 153.4, 142.9, 141.5, 140.2, 138.6, 138.4, 138.0, 136.3,
135.2, 130.5, 130.2, 130.0, 128.7, 52.3, 32.9, 17.6, 17.0;
HRMS (M+H+) calcd for C25H16N8O9(H+), 573.1118;
found, 573.1091.
References and notes
1. Makarov, V. L.; Hirose, Y.; Langmore, J. P. Cell 1997, 88,
657.
2. Wright, W. E.; Tesmer, V. M.; Huffman, K. E.; Levene, S.
D.; Shay, J. W. Gene Dev. 1997, 11, 2801.
3. Parkinson, G. N.; Lee, M. P.; Neidle, S. Nature 2002, 417,
876.
4. Wang, Y.; Patel, D. J. Biochemistry 1992, 31, 8112.
5. Allsopp, R. C.; Vaziri, H.; Patterson, C.; Goldstein, S.;
Younglai, E. V.; Futcher, A. B.; Greider, C. W.; Harley,
C. B. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 10114.
6. Garvik, B.; Carson, M.; Hartwell, L. Mol. Cell. Biol. 1995,
15, 6128.
21. Wipf, P.; Miller, C. P. J. Org. Chem. 1993, 58, 3604.
22. Cabarrocas, G.; Ventura, M.; Maestro, M.; Mahia, J.;
Villalgordo, J. M. Tetrahedron: Asymmetry 2001, 12,
1851.
23. Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59,
7549.
7. Harley, C. B.; Futcher, A. B.; Greider, C. W. Nature 1990,
345, 458.
8. Hastie, N. D.; Dempster, M.; Dunlop, M. G.; Thompson,
A. M.; Green, D. K.; Allshire, R. C. Nature 1990, 346,
866.
24. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.;
Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem.
1998, 19, 1639.
25. Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219.
26. Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.;
Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A. J. Am.
Chem. Soc. 1984, 106, 765.
9. Karlseder, J.; Broccoli, D.; Dai, Y.; Hardy, S.; de Lange,
T. Science 1999, 283, 1321.