Table 1. Optimization of the Catalytic Systema
entry
1
R
substrate
catalyst
AuBr3,
2 mol %
AgNTf2,
10 mol %
PPh3AuNTf2,
1 mol %
time
24 h
conversionb
yield
0%
Me
7a
<5%
8a
8a
8a
2
3
Me
Me
7a
7a
24 h
24 h
15%
15%
6%b
14%b
4
Me
7a
3 h
100%
8a
98%c
5
6
7
Bz
C(Me)3
OtBu
7b
7c
7d
75 min
45 min
20 h
100%
100%
75%
8b
8c
8d
100%c
100%c
69%c
1 mol %
a
b
1
c
Reaction conditions: 0.25 M substrate in CH2Cl2. Estimated by H NMR. Isolated yield.
The gold-catalyzed isomerization of propargylic esters 1
to carboxyallenes 2 has been recently used in various tandem
processes leading to a range of synthetically important
products (eq 1, Scheme 1).14 By analogy with this transfor-
2-ol esters 4 from trimethylsilylmethyl-substituted propargyl
ester 5.15 This tandem transformation proceeds through the
initial generation of the oxocarbenium intermediate 6 fol-
lowed by desilylation and subsequent protodemetalation of
the vinyl gold species (eq 3).
Even if this reaction proved to be efficient (54-87% yield)
and led to the corresponding diene derivatives with an excel-
lent E-selectivity, we believed that our approach could pre-
sent some advantages. The required allenic substrates 3 could
Scheme 1. Synthetic Approach to Functionalized
1,3-Butadien-2-ol Esters
(10) For selected recent examples, see: (a) Gorin, D. J.; Dube, P.; Toste,
F. D. J. Am. Chem. Soc. 2006, 128, 14480-14481. (b) Lo´pez, S.; Herrero-
Go´mez, E.; Pe´rez-Gala´n, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew.
Chem., Int. Ed. 2006, 45, 6029-6032. (c) Toullec, P. Y.; Genin, E.;
Leseurre, L.; Geneˆt, J.-P.; Michelet, V. Angew. Chem., Int. Ed. 2006, 45,
7427-7430. (d) Wang, S.; Zhang, L. J. Am. Chem. Soc. 2006, 128, 14274-
14275. (e) Sun, J.; Conley, M. P.; Zhang, L.; Kozmin, S. A. J. Am. Chem.
Soc. 2006, 128, 9705-9710. (f) Kirsch, S. F.; Binder, J. T.; Lie´bert, C.;
Menz, H. Angew. Chem., Int. Ed. 2006, 45, 5878-5880. (g) Lemie`re, G.;
Gandon, V.; Agenet, N.; Goddard, J.-P.; De Kozak, A.; Aubert, C.;
Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2006, 45, 5796-
5799.
(11) For selected recent examples, see: (a) Gockel, B.; Krause, N. Org.
Lett. 2006, 8, 4485-4488. (b) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.;
Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066-9073.
(c) Nishina, N.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 3314-
3317. (d) Morita, N.; Krause, N. Angew. Chem., Int. Ed. 2006, 45, 1897-
1899.
(12) (a) Buzas, A.; Gagosz, F. J. Am. Chem. Soc. 2006, 128, 12614-
12615. (b) Buzas, A.; Gagosz, F. Synlett 2006, 2727-2730. (c) Buzas, A.;
Istrate, F.; Gagosz, F. Org. Lett. 2006, 8, 1957-1959. (d) Buzas, A.; Gagosz,
F. Org. Lett. 2006, 8, 515-518.
(13) For related studies dealing with the acid-catalyzed or thermal
rearrangement of allenyl carbinol esters into 1,3-butadien-2-ol esters, see:
(a) Olsson, L. I.; Claesson, A.; Bogentof, C. Acta Chem. Scand. 1973, 27,
1629-1636. (b) Horvath, A.; Ba¨ckvall, J.-E. J. Org. Chem. 2001, 66, 8120-
8126. (c) Bridges, A. J.; Thomas, R. D. Chem. Commun. 1983, 485-486.
(14) For selected examples, see: (a) Zhao, J.; Hughes, C. O.; Toste, F.
D. J. Am. Chem. Soc. 2006, 128, 7436-7437. (b) Wang, S.; Zhang, L. J.
Am. Chem. Soc. 2006, 128, 8414-8415. (c) Wang, S.; Zhang, L. J. Am.
Chem. Soc. 2006, 128, 1442-1443. (d) Zhang, L. J. Am. Chem. Soc. 2005,
127, 16804-16805.
mation and given the capability of gold complexes to activate
allenes,11 we envisioned that allenyl carbinol esters such as
3 might be valuable precursors for the synthesis of 1,3-
butadien-2-ol esters (e.g., 4) after an analogous gold-
catalyzed 1,3-shift of the ester functionality (eq 2). Interest-
ingly, Wang and Zhang have recently reported a new gold(I)-
catalyzed reaction for the formation of such 1,3-butadien-
(15) Wang, S.; Zhang, L. Org. Lett. 2006, 8, 4585-4587.
986
Org. Lett., Vol. 9, No. 6, 2007