2038 Organometallics, Vol. 26, No. 8, 2007
Bolan˜o et al.
calculations indicate that the HOMO orbital of these species is
mainly located at the Câ atom of the unsaturated chain.10 In
accordance with this, the reactions of these compounds with
electrophiles lead to alkenylcarbyne derivatives, which are stable
with electron-rich coligands.11 When some of the R substituents
of the unsaturated chain are phenyl groups and the complex
contains π-acidic ligands, the reduction into the corresponding
metal-indenylidene compound, an isomer of the starting alle-
nylidene, is observed.12
Results and Discussion
The recently reported13 bis-solvento hydride-allenylidene
complex [OsH(dCdCdCPh2)(CH3CN)2(PiPr3)2]BF4 (1) appears
to be a member of the family of electron-rich species, despite
that one should expect an electron-poor character for the metal
center. Thus, in dichloromethane at room temperature, it reacts
with a stoichiometric amount of acetic acid to afford the hydride-
alkenylcarbyne derivative [OsH(κ2-O2CCH3)(tCCHdCPh2)
(PiPr3)2]BF4 (2), containing a chelate acetate ligand (eq 2). This
complex, which is isolated as a pink solid in 93% yield, is the
result of the addition of the proton of the weak acid to the Câ
atom of the allenylidene ligand and the carboxylate group to
the metal center.
Figure 1. Molecular diagram of the cation of 2. Selected bond
lengths (Å) and angles (deg): Os-O(1) 2.228(3), Os-O(2) 2.203-
(3), Os-C(1) 1.740(4), C(1)-C(2) 1.415(5), C(2)-C(3) 1.358(6);
P(1)-Os-P(2) 166.47(4), O(1)-Os-O(2) 58.66(10), O(1)-Os-
C(1) 177.62(15), O(2)-Os-H(01) 153.5(15).
Os-C(1) bond length of 1.740(4) Å is fully consistent with an
Os-C triple bond formulation.5a,8,14 Similarly to other carbyne-
metal compounds15 a slight bending in the Os-C(1)-C(2)
moiety is also present (Os-C(1)-C(2) ) 171.2(3)°). The
alkenyl carbyne proposal is supported by the bond lengths and
angles within the η1-carbon donor ligand; for example, C(1)
and C(2) are separated by 1.415(5) Å, and C(2) and C(3) by
1.358(6) Å, and the angles around C(2) and C(3) are in the
range 111-125°.
The IR spectrum of 2 in dichloromethane shows the νasym
-
(OCO) band at 1535 cm-1 and the νsym(OCO) band at 1471
cm-1. The value of ∆ν (∆ν ) νasym(OCO) - νsym(OCO)) of
64 cm-1 is consistent with the bidentate coordination mode of
the acetate group.16 In agreement with the presence of a hydride
ligand in the complex, its 1H NMR spectrum shows a triplet at
-7.80 ppm with a H-P coupling constant of 15.7 Hz. In the
low-field region of the spectrum, the most noticeable signal is
a singlet at 5.14 ppm corresponding to the C(sp2)-H proton of
the alkenyl substituent of the carbyne ligand. In the 13C{1H}
NMR spectrum the Os-CR resonance appears at 272.7 ppm,
as a triplet with a C-P coupling constant of 8.0 Hz. The 31P-
{1H} NMR spectrum contains a singlet at 42.6 ppm.
Figure 1 shows a view of the geometry of the cation of 2.
The coordination around the osmium atom can be rationalized
as a distorted octahedron with the phosphorus atoms of the
phosphine ligands occupying trans positions (P(1)-Os-P(2)
) 166.47(4)°). The perpendicular plane is formed by the
bidentate ligand, which acts with a bite angle O(1)-Os-O(2)
of 58.66(10)°, the hydride trans disposed to O(2) (O(2)-Os-
H(O1) ) 153.5(15)°) and the carbyne group trans disposed to
O(1) (C(1)-Os-O(1) ) 177.62(15)°). The acetate group
coordinates in an asymmetrical fashion, with the separation
between the metal center and O(2) (2.203(3) Å) being about
0.02 Å shorter than the Os-O(1) distance (2.228(3) Å). The
Complex 2 is stable in 1,2-dichloroethane, even under reflux
for 24 h. It does not undergo reduction into an indenylidene
species by loss of molecular hydrogen, acetic acid, or tetrafluo-
roboric acid, nor is its transformation into a five-coordinate
carbene isomer observed. In agreement with this, DFT calcula-
tions on the model system [Os(HCO2)H(tCCHdCH2)(PMe3)2]+
indicate that the five-coordinate carbene cation [Os(κ2-O2CH)-
(10) (a) Berke, H.; Huttner, G.; Von Seyerl, J. Z. Naturforsch. B 1981,
36, 1277. (b) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Gonza´lez-Cueva,
M.; Lastra, E.; Borge, J.; Garc´ıa-Granda, S.; Pe´rez-Carren˜o, E. Organo-
metallics 1996, 15, 2137. (c) Edwards, A. J.; Esteruelas, M. A.; Lahoz, F.
J.; Modrego, J.; Oro, L. A.; Schrickel, J. Organometallics 1996, 15, 3556.
(d) Esteruelas, M. A.; Go´mez, A. V.; Lo´pez, A. M.; Modrego, J.; On˜ate, E.
Organometallics 1997, 16, 5826. (e) Esteruelas, M. A.; Go´mez, A. V.;
Lo´pez, A. M.; Modrego, J.; On˜ate, E. Organometallics 1998, 17, 5434. (f)
Baya, M.; Crochet, P.; Esteruelas, M. A.; Gutie´rrez-Puebla, E.; Lo´pez, A.
M.; Modrego, J.; On˜ate, E.; Vela, N. Organometallics 2000, 19, 2585.
(11) See for example: (a) Crochet, P.; Esteruelas, M. A.; Lo´pez, A. M.;
Ruiz, N.; Tolosa, J. I. Organometallics 1998, 17, 3479. (b) Wen, T. B.;
Cheung, Y. K.; Yao, J.; Wong, W.-T., Zhou, Z. Y.; Jia, G. Organometallics
2000, 19, 3803. (c) Jung, S.; Brandt, C. D.; Werner, H. New J. Chem. 2001,
25, 1101. (d) Rigaut, S.; Touchard, D.; Dixneuf, P. H. Organometallics
2003, 22, 3980. (e) Esteruelas, M. A.; Lo´pez, A. M.; On˜ate, E.: Royo, E.
Organometallics 2004, 23, 3021. (f) Pavlik, S.; Mereiter, K.; Puchberger,
M.; Kirchner, K. J. Organomet. Chem. 2005, 690, 5497. (g) Cadierno, V.;
D´ıez, J.; Garc´ıa-Garrido, S. E.; Gimeno, J. Organometallics 2005, 24, 3111.
(h) Bustelo, E.; Jime´nez-Tenorio, M.; Puerta, M. C.; Valerga, P. Organo-
metallics 2006, 25, 4019.
(14) See for example: (a) Esteruelas, M. A.; Oliva´n, M.; On˜ate, E.; Ruiz,
N.; Tajada, M. A. Organometallics 1999, 18, 2953. (b) Castarlenas, R.;
Esteruelas, M. A.; On˜ate, E. Organometallics 2001, 20, 3283. (c) Barrio,
P.; Esteruelas, M. A.; On˜ate, E. Organometallics 2002, 21, 2491. (d) Barrio,
P.; Esteruelas, M. A.; On˜ate, E. J. Am. Chem. Soc. 2004, 126, 1946. (e)
Wen, T. B.; Hung, W. Y.; Zhou, Z. Y.; Lo, M. F.; Williams, I. D.; Jia, G.
Eur. J. Inorg. Chem. 2004, 2837. (f) Lee, J.-H.; Pink, M.; Caulton, K. G.
Organometallics 2006, 25, 802. (g) Hung, W. Y.; Zhu, J.; Wen, T. B.; Yu,
K. P.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. J. Am. Chem. Soc.
2006, 128, 13742.
(15) See for example: (a) Esteruelas, M. A.; Lo´pez, A. M.; Ruiz, N.;
Tolosa, J. J. Organometallics 1997, 16, 4657. (b) Crochet, P.; Esteruelas,
M. A.; Lo´pez, A. M.; Martinez, M.-P.; Oliva´n, M.; On˜ate, E.; Ruiz, N.
Organometallics 1998, 17, 4500. (c) Bustelo, E.; Jime´nez-Tenorio, M.;
Mereiter, K.; Puerta, M. C.; Valerga, P. Organometallics 2002, 21, 1903.
(d) Wen, T. B.; Zhou, Z. Y.; Lo, M. F.; Williams, I. D.; Jia, G.
Organometallics 2003, 22, 5217.
(12) See for example: (a) Asensio, A.; Buil, M. L.; Esteruelas, M. A.;
On˜ate, E. Organometallics 2004, 23, 5787. (b) Castarlenas, R.; Vovard,
C.; Fischmeister, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2006, 128, 4079.
(c) Esteruelas, M. A.; Lo´pez, A. M. Organometallics 2005, 24, 3584.
(13) Bolan˜o, T.; Castarlenas, R.; Esteruelas, M. A.; On˜ate, E. J. Am.
Chem. Soc. 2006, 128, 3965.
(16) Decon, G. B.; Phillips, R. J. Coord. Chem. ReV. 1980, 33, 327.