C O M M U N I C A T I O N S
Table 2. Aromatization of 2-(2′-Iodovinyl)ethynylbenzene
Scheme 3
a 1,2-shift of a carbon-carbon bond to generate intermediate F.
Notably, a loss of deuterium content of naphthalene 38A (75%)
was observed as compared to its starting compound d-31 (95%).
This information suggests that species F undergoes a 1,2-hydride
shift to give the more stable diphenyl methyl cation G. Dissociation
of a proton from species G, followed by cleavage of the ruthenium-
naphthyl bond, produces active ruthenium species and naphthalene
product.
a 10 mol % catalyst, [substrate] ) 0.05 M in toluene, 110 °C, 6-8 h.
b Yields were reported after separation from the silica column.
Table 3. 1,2-Aryl Shift for 2-(2′-Arylvinyl)ethynylbenzene
In summary, we have reported unusual 1,2-iodo and aryl shifts
in the electrocyclization of o-(ethynyl)styrenes.12 Isotopic labeling
experiments were performed to elucidate the reaction mechanism,
and the results indicate that the 1,2-aryl shift arises from 5-endo-
dig electrocyclization of a ruthenium-vinylidene species, whereas
the 1,2-iodo shift follows a 6-endo-dig pathway.
substrates
products (yields)a,b
(1) X ) Y ) H, R ) Me (25)
32A (35%), 32B (35%)
33A (60%), 33B (15%)
34A (54%), 34B (18%)
35A (64%), 35B (6%)
36A (18%), 36B (56%)
37A (61%), 37B (15%)
38A (73%), 38B (trace)
Acknowledgment. The authors wish to thank the National
Science Council, Taiwan, for support of this work.
Supporting Information Available: Experimental procedures,
synthetic schemes and spectral data of compounds 1-38, and 13C NMR
and 13C-1H HMBC spectra of 13C-enriched sample 38A (PDF). This
(2) X ) Y ) H, R ) OMe (26)
(3) X ) OMe, Y ) H, R ) Me (27)
(4) X ) OMe, Y ) H, R ) OMe (28)
(5) X ) Y ) O-CH2-O, R ) H (29)
(6) X ) Y ) O-CH2-O, R ) Me (30)
(7) X ) Y ) O-CH2-O, R ) OMe (31)
a 8 mol % catalyst, [substrate] ) 0.05 M in toluene, 110 °C, 6-8 h.
References
b Yields were reported after separation from the silica column.
(1) Merlic, C. A.; Pauly, M. E. J. Am. Chem. Soc. 1996, 118, 11319.
(2) (a) Maeyama, K.; Iwasawa, N. J. Org. Chem. 1999, 64, 1344. (b) Miura,
T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518. (c) Wang, Y.; Finn,
M. G. J. Am. Chem. Soc. 1995, 117, 8045. (d) Martin-Matute, B.; Nevado,
C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2003, 125,
5757. (e) O’Connor, J. M.; Friese, S. J.; Tichenor, M. J. Am. Chem. Soc.
2002, 124, 3506.
Scheme 2
(3) (a) Iwasawa, N.; Shido, M.; Kusama, H. J. Am. Chem. Soc. 2001, 123,
5815. (b) Iwasawa, N.; Shido, M.; Kusama, H. J. Am. Chem. Soc. 2000,
122, 10226.
(4) (a) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am.
Chem. Soc. 2002, 124, 12650. (b) Miki, K.; Nishino, F.; Ohe, K.; Uemura,
S. J. Am. Chem. Soc. 2002, 124, 5260.
(5) Olah, G. A.; SuryaPrakash, G. K.; Sommer, J. Super Acids; Wiley: New
York, 1985.
(6) Chan, W.-C.; Lau, C.-P.; Chen, Y.-Z.; Fang, Y.-Q.; Ng, S.-M.; Jia, G.
Organometallics 1997, 16, 34. (b) Yeh, K.-L.; Liu, B.; Lo, C.-Y.; Liu,
R.-S. J. Am. Chem. Soc. 2002, 124, 6510. (c) Datta, S.; Chang, C.-L.;
Yeh, K.-L.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 9294.
(7) The E/Z ratios of iodovinyl species in Table 2 are provided in the
Supporting Information.
(8) 1H-NOE map of compounds 18a and 13C-1H HMBC and 13C NMR
spectra of 13C-enriched 38A are provided in the Supporting Information.
(9) The authentic samples 32A and 32B are prepared from Suzuki coupling
of 4-methylphenyl boric acid with 1- and 2-naphthyl bromides, respec-
tively.
(10) (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Bruneau, C.; Dixneuf,
P. Acc. Chem. Res. 1999, 32, 311. (c) Bruce, M. I. Chem. ReV. 1991, 91,
197. (d) Bustelo, E.; Carbo, J. J.; Lledos, A.; Mereiter, K.; Puerta, M. C.;
Valerga, P. J. Am. Chem. Soc. 2003, 125, 3311. (e) Iwasawa, N.;
Maeyama, K.; Kusama, H. Org. Lett. 2001, 3, 3871.
A plausible mechanism (Scheme 3) involves an equilibrium3,10
between ruthenium-alkyne complexes A and ruthenium-vi-
nylidene species B. Electrocyclization of species B via a 6-endo-
dig pathway (a) gives ruthenium naphthylidene species C which
subsequently undergoes a 1,2-iodo shift to give ruthenium-η2-
naphthalene D, ultimately producing the expected product and active
ruthenium species. The mechanism in the transformation of species
C to D is analogous to the classical conversion of a methyl
substituted carbene to a metal-olefin species.11 On the basis of 2H-
and 13C-labeling results, we propose that a 1,2-aryl shift arises from
the 5-endo-dig electrocyclization (pathway b) of species B to give
ruthenium fluorenyl species E which bears a benzyl cation to induce
(11) (a) Roger, C.; Bodner, G. S.; Hatton, W. G.; Gladysz, J. A. Organome-
tallics 1991, 10, 3266. (b) Kusama, H.; Takaya, J.; Iwasawa, N. J. Am.
Chem. Soc. 2002, 124, 11592. (c) Bly, R. S.; Silverman, G. S.; Bly, R. K.
J. Am. Chem. Soc. 1988, 110, 7730.
(12) Our results indicate that the 1,2-iodo and phenyl shifts are not applicable
to o-(ethynyl)styrenes bearing internal alkynes.
JA0379159
9
J. AM. CHEM. SOC. VOL. 125, NO. 51, 2003 15763