LETTER
Alcoholysis of s-Symmetric Cyclic Dicarboxylic Anhydrides
3281
Table 2 Enantioselective Alcoholysis of Cyclic Dicarboxylic Anhydrides 2a–h Catalyzed by Chiral Sulfonamide 1 (continued)
O
BnOH (1.2–5 equiv)
TMSCHN2
(2 equiv)
CO2Bn
CO2Bn
CO2H
1 (5 mol%)
O
R*
R
R*
Et2O
r.t., 20 h
benzene–MeOH
r.t., 15 min
CO2Me
O
2a–h
4a–h
Entry
Anhydride
BnOH (equiv)
Product
Yield (%)a
89
ee (%)b
97
O
CO2Me
CO2Bn
O
O
O
8
5
O
(1S,2R,3S,4R)-4h
2h
a Isolated yields of 4a–h.
b Determined by HPLC analysis.
c Determined by HPLC analysis after conversion to a known compound.
d 10 mol% of 1 was used.
Finally, we used cold-spray ionization mass spectrometry References and Notes
(CSI-MS)12 to analyze a 1:1 mixture of organocatalyst 1
(1) For recent reviews on enzymes in organic chemistry, see:
(a) Suga, T. Curr. Org. Chem. 1999, 3, 377. (b) Koeller,
K. M.; Wong, C.-H. Nature (London) 2001, 409, 232.
(c) Sheldon, R. A.; van Rantwijk, F. Aust. J. Chem. 2004, 57,
281. (d) Sureshkumar, M.; Lee, C.-K. J. Mol. Catal. B:
Enzym. 2009, 60, 1.
(2) For recent reviews on organocatalysts, see: (a) Ooi, T.;
Maruoka, K. Acc. Chem. Res. 2004, 37, 526. (b) Tian,
S.-K.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L.
Acc. Chem. Res. 2004, 37, 621. (c) Kobayashi, S.; Sugiura,
M.; Ogawa, C. Adv. Synth. Catal. 2004, 346, 1023.
(d) Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43,
5138. (e) Dalaigh, C. O. Synlett 2005, 875. (f) Gaunt, M. J.;
Johansson, C. C. C.; McNally, A.; Vo, N. T. Drug Discovery
Today 2006, 12, 8. (g) Lelais, G.; MacMillan, D. W. C.
Aldrichimica Acta 2006, 39, 79. (h) Imada, Y.; Naota, T.
Chem. Rec. 2007, 7, 354. (i) Buckley, B. R. Annu. Rep.
Prog. Chem., Sect. B: Org. Chem. 2007, 103, 90.
(0.1 mM) and anhydride 2a (0.1 mM) in THF at a spray
temperature of –20 °C. The resulting CSI-MS spectrum
showed a prominent ion peak corresponding to a 1:1 com-
plex of organocatalyst 1 and anhydride 2a at m/z =
706.4.11 Thus, the dual activation of anhydride 2a and
benzyl alcohol by organocatalyst 1 may have been a cause
of the enantioselective alcoholysis, similar to the hydro-
lysis of serine protease (Figure 2).13
O
Ph
O
2a
O
O
CF3
H
H
(j) McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.;
Riches, S. L.; Aggarwal, V. K. Chem. Rev. 2007, 107, 5841.
(k) Guillena, G.; Najera, C.; Ramon, D. J. Tetrahedron:
Asymmetry 2007, 18, 2249. (l) Marion, N.; Díez-González,
S.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2988.
(m) You, S.-L. Chem. Asian J. 2007, 2, 820. (n) Renaud, P.;
Leong, P. Science 2008, 322, 55. (o) MacMillan, D. W. C.
Nature (London) 2008, 455, 304. (p) Barbas, C. F. III
Angew. Chem. Int. Ed. 2008, 47, 42. (q) Chen, Y.-C. Synlett
2008, 1919. (r) Gruttadauria, M.; Giacalone, F.; Noto, R.
Chem. Soc. Rev. 2008, 37, 1666. (s) Xu, L.-W.; Luo, J.; Lu,
Y. Chem. Commun. 2009, 1807. (t) Yoshioka, E.; Kohtani,
S.; Miyabe, H. Heterocycles 2009, 79, 229. (u) Connon,
S. J. Synlett 2009, 354.
Me2N
N
S
CF3
O2
Ph
Ph
1
Figure 2 Plausible dual activation manner of anhydride 2a and benzyl
alcohol by organocatalyst 1
In summary, chiral bifunctional sulfonamide 1 has been
shown to promote highly efficient desymmetrization of
s-symmetric cyclic dicarboxylic anhydrides 2a–h with
benzyl alcohol. Further studies are under way to investi-
gate the stereodifferentiating mechanism of the reaction.
(3) For reviews on desymmetrization of cyclic anhydrides, see:
(a) Spivey, A. C.; Andrews, B. I. Angew. Chem. Int. Ed.
2001, 40, 3131. (b) Chen, Y.; McDaid, P.; Deng, L. Chem.
Rev. 2003, 103, 2965. (c) Atodiresei, I.; Schiffers, I.; Bolm,
C. Chem. Rev. 2007, 107, 5683.
Supporting Information for this article is available online at
(4) (a) Rho, H. S.; Oh, S. H.; Lee, J. W.; Lee, J. Y.; Chin, J.;
Song, C. E. Chem. Commun. 2008, 1208. (b) Oh, S. H.;
Rho, H. S.; Lee, J. W.; Lee, J. E.; Youk, S. H.; Chin, J.; Song,
C. E. Angew. Chem. Int. Ed. 2008, 47, 7872.
(5) Peschiulli, A.; Gun’ko, Y.; Connon, S. J. J. Org. Chem.
2008, 73, 2454.
Synlett 2009, No. 20, 3279–3282 © Thieme Stuttgart · New York