Communication
[3] a) S.-I. Murahashi, K. Kondo, T. Hakata, Tetrahedron Lett. 1982, 23, 229–
232; b) R. Grigg, T. R. B. Mitchell, S. Sutthivaiyakit, N. Tonggpeny, J. Chem.
Soc., Chem. Commun. 1981, 611–612; c) Y. Watanabe, Y. Tsuji, Y. Ohsugi,
Tetrahedron Lett. 1981, 22, 2667–2670; d) A. Arcelli, B.-T. Khai, G. Porzi, J.
Organomet. Chem. 1982, 235, 93–96.
[4] a) J. Unsin, R. Hemmer, M. Reichhardt, H.-A. Brune, J. Organomet. Chem.
1989, 369, 335–342; b) S. H. Kwak, S. A. Lee, K.-I. Lee, Tetrahedron: Asym-
metry 2010, 21, 800–804; c) E. Féghali, L. Barloy, J.-T. Issenhuth, L. Kar-
mazin-Brelot, C. Bailly, M. Pfeffer, Organometallics 2013, 32, 6186–6194.
enium, which acts as the base that keeps the catalysis running.
The broad substrate scope and the in situ formation of the
critical imine intermediates open up simple access to a wide
range of amines. The limitation of the catalytic transformation
is due to the formation of the imine that occurs in equilibrium.
Experimental Section
[5]
a) A. Ros, A. Magriz, H. Dietrich, M. Ford, R. Fernández, J. M. Lassaletta,
Adv. Synth. Catal. 2005, 347, 1917–1920; b) S.-Y. Shirai, H. Nara, Y. Kayaki,
T. Ikariya, Organometallics 2009, 28, 802–809; c) S. Gülcemal, A. G. Gökçe,
B. Çetinkaya, Inorg. Chem. 2013, 52, 10601–10609; d) A. L. Müller,
T. Bleith, T. Roth, H. Wadepohl, L. H. Gade, Organometallics 2015, 34,
2326–2342.
General Methods: All starting materials for catalysis were pur-
chased from Sigma–Aldrich, Acros, and TCI Chemicals and were pu-
rified by standard methods before use. Catalyst A was obtained
following a published protocol[18] starting from [(η6-cymene)RuCl2]2
(Strem Chemicals). For spectroscopic details, see the Supporting In-
formation. 2-Propanol (p.a. purity) was purchased from Bernd Kraft
GmbH.
[6]
a) G.-Z. Wang, J.-E. Bäckvall, J. Chem. Soc., Chem. Commun. 1992, 980–
982; b) N. Uematsu, A. Fujii, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am.
Chem. Soc. 1996, 118, 4916–4917; c) G. D. Williams, R. A. Pike, C. E. Wade,
M. Wills, Org. Lett. 2003, 5, 4227–4230; d) J. Canivet, G. Süss-Fink, Green
Chem. 2007, 9, 391–397; e) D. Guijarro, Ó. Pablo, M. Yus, J. Org. Chem.
2010, 75, 5265–5270; f) F. E. Fernández, M. C. Puerta, P. Valerga, Organo-
metallics 2011, 30, 5793–5802; g) M. Hernández-Juárez, J. López-Serrano,
P. Lara, J. P. Morales-Cerón, M. Vaquero, E. Álvarez, V. Salazar, A. Suárez,
Chem. Eur. J. 2015, 21, 7540–7555; h) O. Pablo, D. Guijarro, M. Yus, Eur. J.
Org. Chem. 2014, 7034–7038.
The catalysis experiments were conducted in headspace vials con-
taining a Teflon®-coated magnetic stirring bar, which was predried
in an oven at 60 °C and then dried under vacuum (1 Pa) at 82 °C
for 1 h. After cooling to room temperature under vacuum, the vials
were charged with the solid compounds, sealed with Teflon®-coated
septa caps (VWR), and were evacuated and reflushed with nitrogen
(3×) within 30 min. Isopropanol, the aldehyde, and the aniline were
added by syringe. Tetradecane and hexadecane were used as the
internal standards for GC analytics depending on the retention
times to be analyzed. Before analysis, the reaction mixtures were
filtered through a short column containing MgSO4 and neutral
Al2O3 followed by washing of the column with ethyl acetate. For
GC analysis, a Perking–Elmer Clarus 580 gas chromatograph
equipped with a FID and a FS-OV-1701-CB-0.25 column (length:
30 m; diameter: 0.25 mm; CS Chromatographie Service GmbH) was
used (carrier gas: He, 0.41 MPa; injector temp.: 250 °C; split-ratio:
7.1:1; temp. program: 80 °C, 6 °C min–1).
[7]
[8]
S. Kuhl, R. Schneider, Y. Fort, Organometallics 2003, 22, 4184–4186.
a) S. Zhou, S. Fleischer, K. Junge, S. Das, D. Addis, M. Beller, Angew. Chem.
Int. Ed. 2010, 49, 8121–8125; Angew. Chem. 2010, 122, 8298–8302; b)
A. A. Mikhailine, M. I. Maishan, R. H. Morris, Org. Lett. 2012, 14, 4638–
4641; c) W. Zuo, A. J. Lough, Y. F. Li, R. H. Morris, Science 2013, 342, 1080–
1083.
[9]
a) G. Zhang, B. L. Scott, S. K. Hanson, Angew. Chem. Int. Ed. 2012, 51,
12102–12106; Angew. Chem. 2012, 124, 12268–12272; b) G. Zhang, S. K.
Hanson, Chem. Commun. 2013, 49, 10151–10153.
[10]
a) S. Gomez, J. A. Peters, T. Maschmeyer, Adv. Synth. Catal. 2002, 344,
1037–1057; b) T. C. Nugenta, M. El-Shazly, Adv. Synth. Catal. 2010, 352,
753–819.
[11]
[12]
[13]
[14]
T. Gross, A. M. Seayad, M. Ahmad, M. Beller, Org. Lett. 2002, 4, 2055–
2058.
J. R. Cabrero-Antonino, I. Sorribes, K. Junge, M. Beller, Angew. Chem. Int.
Ed. 2016, 55, 387–391; Angew. Chem. 2016, 128, 395–399.
R. Kadyrov, T. H. Riermeier, Angew. Chem. Int. Ed. 2003, 42, 5472–5474;
Angew. Chem. 2003, 115, 5630–5632.
Acknowledgments
The authors gratefully acknowledge the University of Kaisers-
lautern, Research College MAGNENZ and State Research Unit
(NanoKat), Germany for financial support.
Q. Lei, Y. Wei, D. Talwar, C. Wang, D. Xue, J. Xiao, Chem. Eur. J. 2013, 19,
4021–4029.
[15]
[16]
M. Zhu, Tetrahedron Lett. 2016, 57, 509–511.
S. Ogo, N. Makihara, Y. Kaneko, Y. Watanabe, Organometallics 2001, 20,
4903–4910.
a) S. Imm, S. Bähn, M. Zhang, L. Neubert, H. Neumann, F. Klasovsky, J.
Pfeffer, T. Haas, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 7599–7603;
Angew. Chem. 2011, 123, 7741–7745; b) D. Pingen, M. Lutz, D. Vogt, Orga-
nometallics 2014, 33, 1623–1629.
N. Honczek, M. Oliván, E. Oñate, M. Valencia, M. A. Esteruelas, Organome-
tallics 2011, 30, 2468–2471.
Keywords: Homogeneous catalysis · Ruthenium ·
Hydrogenation · Reduction · Amination · Aldehydes
[17]
[1] a) D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621–6686; b) G. Chelucci,
S. Baldino, W. Baratta, Acc. Chem. Res. 2015, 48, 363–379; c) J.-I. Ito, H.
Nishiyama, Tetrahedron Lett. 2014, 55, 3133–3146; d) Y. Wei, X. Wu, C.
Wang, J. Xiao, Catal. Today 2015, 247, 104–116; e) R. Malacea, R. Poli,
E. Manoury, Coord. Chem. Rev. 2010, 254, 729–752; f) J.-E. Bäckvall, J.
Organomet. Chem. 2002, 652, 105–111; g) S. E. Clapham, A. Hadzovic,
R. H. Morris, Coord. Chem. Rev. 2004, 248, 2201–2237; h) M. A. Esteruelas,
L. A. Oro, Chem. Rev. 1998, 98, 577–588; i) Y.-M. He, Q.-H. Fan, Chem-
CatChem 2015, 7, 398–400.
[2] a) A. Bartoszewicz, N. Ahlsten, B. Martín-Matute, Chem. Eur. J. 2013, 19,
7274–7302; b) K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya, R. Noyori,
Angew. Chem. Int. Ed. Engl. 1997, 36, 285–288; Angew. Chem. 1997, 109,
297–300; c) Y.-Y. Li, S.-L. Yu, W.-Y. Shen, J.-X. Gao, Acc. Chem. Res. 2015,
48, 2587–2598; d) T. Ohkuma, N. Utsumi, K. Tsutsumi, K. Murata, C. San-
doval, R. Noyori, J. Am. Chem. Soc. 2006, 128, 8724–8725; e) R. Noyori, T.
Ohkuma, Angew. Chem. Int. Ed. 2001, 40, 40–73; Angew. Chem. 2001,
113, 40–75; f) T. Ikariya, A. J. Blacker, Acc. Chem. Res. 2007, 40, 1300–
1308; g) F. Foubelo, C. Nájera, M. Yus, Tetrahedron: Asymmetry 2015, 26,
769–790; h) P. E. Sues, K. Z. Demmans, R. H. Morris, Dalton Trans. 2014,
43, 7650–7667; i) R. H. Morris, Acc. Chem. Res. 2015, 48, 1494–1502.
[18]
[19]
a) M. Zhang, H. Yang, Y. Zhang, C. Zhu, W. Li, Y. Cheng, H. Hu, Chem.
Commun. 2011, 47, 6605–6607; b) H. Yang, R. Mao, C. Luo, C. Lu, G.
Cheng, Tetrahedron 2014, 70, 8829–8835.
[20]
[21]
a) X.-H. Zhu, L.-H. Cai, C.-X. Wang, Y.-N. Wang, X.-Q. Guo, X.-F. Hou, J. Mol.
Catal. A 2014, 393, 134–141; b) D. Gnanamgari, A. Moores, E. Rajaseelan,
R. H. Crabtree, Organometallics 2007, 26, 1226–1230; c) Y. Wei, X. Wu, C.
Wang, J. Xiao, Catal. Today 2015, 247, 104–116; d) D. Talwar, N. P. Sal-
guero, C. M. Robertson, J. Xiao, Chem. Eur. J. 2014, 20, 245–252.
a) C. Wang, A. Pettman, J. Bacsa, J. Xiao, Angew. Chem. Int. Ed. 2010, 49,
7548–7552; Angew. Chem. 2010, 122, 7710–7714; b) C. Wang, B. Villa-
Marcosa, J. Xiao, Chem. Commun. 2011, 47, 9773–9785; c) D. Talwar, N. P.
Salguero, C. M. Robertson, J. Xiao, Chem. Eur. J. 2014, 20, 245–252.
L. Taghizadeh Ghoochany, C. Kerner, S. Farsadpour, Y. Sun, F. Menges, G.
Niedner-Schatteburg, W. R. Thiel, Eur. J. Inorg. Chem. 2013, 4305–4317.
a) S. Farsadpour, L. Taghizadeh Ghoochany, Y. Sun, W. R. Thiel, Eur. J.
Inorg. Chem. 2011, 4603–4609; b) S. Farsadpour, L. Taghizadeh Ghoo-
[22]
[23]
Eur. J. Org. Chem. 0000, 0–0
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim