the Diels-Alder or aldol adducts invariantly need to undergo
further redox manipulations to furnish the acene structure.
However, the redox steps can cause problems with more
sensitive acene products. We hereby propose a one-step
synthesis of tetracene via a bisallenyl annulation cascade
cyclization reaction without employing such redox opera-
tions.
Allene is a very useful structure motif to trigger annulation
reactions. Such reactions are often employed in the synthesis
of exotic aromatic systems.6 The application of o-diallene
to construct various linearly fused aromatic systems was also
well-documented in the literature.7 In such transformations,
the starting o-diallenyl compounds first undergo annulation
to form transient o-quinonedimethane intermediates. To reach
a stable product, the diradicaloid intermediates can be trapped
by internal hydrogen abstraction or inter- or intramolecular
cyclization.8 When the diradicaloids derived from o-diallenyl
phenylene undergo intramolecular electrocyclic reaction with
a phenyl group, as reported by Saa´ et al.,8a the intermediate
will lead to a dihydrotetracene-type product. We further
reasoned that such a cyclization can be made irreversible if
a leaving group is incorporated into the system to trigger a
post-annulation elimination reaction and furnish the tetracene
structure. We shall use such a proposed mechanism as our
working model in the subsequent investigation.
Scheme 1. Cascade Cyclization of o-Bisallenyl Compounds to
Tetracene Derivatives
(3) Pentacene and pentacene derivative based devices: (a) Brown, A.
R.; Jarrett, C. P.; deLeeuw, D. M.; Matters, M. Synth. Met. 1997, 88, 37.
(b) Nelson, S. F.; Lin, Y.-Y.; Gundlach, D. J.; Jackson, T. N. Appl. Phys.
Lett. 1998, 72, 1854. (c) Rost, C.; Gundlach, D. J.; Karg, S.; Riess, W. J.
Appl. Phys. 2002, 95, 5782. (d) Afzali, A.; Dimitrakopoulos, C. D.; Breen,
T. L. J. Am. Chem. Soc. 2002, 124, 8812. (e) Podzorov, V.; Sysoev, S. E.;
Loginova, E.; Pudalov, V. M.; Gershenson, M. E. Appl. Phys. Lett. 2003,
83, 3504. (f) Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai,
Y.; Inoue, Y.; Sato, F.; Tokito, S. J. Am. Chem. Soc. 2004, 126, 8138. (g)
Payne, M. M.; Parkin, S. R.; Anthony, J. E.; Kuo, C. C.; Jackson, T. N. J.
Am. Chem. Soc. 2005, 127, 4986. (h) Miao, Q.; Chi, X.; Xiao, S.; Zeis, R.;
Lefenfeld, M.; Siegrist, T.; Steigerwald, M. L.; Nuckolls, C. J. Am. Chem.
Soc. 2006, 128, 1340. Tetracene and tetracene based devices: (i) Sundar,
V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.;
Gershenson, M. E.; Rogers, J. A. Science 2004, 303, 1644. (j) Tulevski, G.
S.; Miao, Q.; Fukuto, M.; Abram, R.; Ocko, B.; Pindak, R.; Steigerwald,
M. L.; Kagan, C. R.; Nuckolls, C. J. Am. Chem. Soc. 2004, 126, 15048. (k)
Moon, H.; Zeis, R.; Borkent, E.; Besnard, C.; Lovinger, A. J.; Siegrist, T.;
Christian Kloc, C.; Bao, Z. J. Am. Chem. Soc. 2004, 126, 15322. (l) Merlo,
J. A.; Newman, C. R.; Gerlach, C. P.; Kelley, T. W.; Muyres, D. V.; Fritz,
S. E.; Toney, M. F.; Frisbie, C. D. J. Am. Chem. Soc. 2005, 127, 3997.
Heteroacene based devices: (m) Laquindanum, J. G.; Katz, H. E.; Lovinger,
A. J. J. Am. Chem. Soc. 1998, 120, 664.
(4) (a) Anthony, J. E. Chem. ReV. 2006, 106 (12), 5028. (b) Anthony, J.
E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am. Chem. Soc. 2001, 123,
9482. (c) Anthony, J. E.; Eaton, D. L.; Parkin, S. R. Org. Lett. 2002, 4, 15.
(d) Swartz, C. R.; Parkin, S. R.; Bullock, J. E.; Anthony, J. E.; Mayer, A.
C.; Malliaras, G. G. Org. Lett. 2005, 7, 3163. (e) Payne, M. M.; Parkin, S.
R.; Anthony, J. E. J. Am. Chem. Soc. 2005, 127, 8028. (f) Lin, C.-H.;
Radhakrishnan, K. Chem. Commun. 2005, 504. (g) Radhakrishnan, K.; Lin,
C.-H. Synlett 2005, 2179. (h) Reichwagen, J.; Hopf, H.; Desvergne, J.-P.;
Del Guerzo, A.; Bouas-Laurent, H. Synthesis 2005, 3505. (i) Jiang, J. Y.;
Kaafarani, B. R.; Neckers, D. C. J. Org. Chem. 2006, 71, 2155. (j)
Kobayashi, K.; Shimaoka, R.; Kawahata, M.; Yamanaka, M.; Yamaguchi,
K. Org. Lett. 2006, 8, 2385.
(5) (a) Reichwagen, J.; Hopf, H.; Guerzo, A. D.; Desvergne, J. P.; Belin,
C.; Laurent, H. B. Org. Lett. 2005, 7, 971. (b) Reichwagen, J.; Hopf, H.;
Guerzo, A. D.; Desvergne, J. P.; Belin, C.; Laurent, H. B. Org. Lett. 2005,
7, 971. (c) Chan, S. H.; Yick, C. Y.; Wong, H. N. C. Tetrahedron 2002,
58, 9413. (d) Takahashi, T.; Kitamura, M.; Shen, B.; Nakajima, K. J. Am.
Chem. Soc. 2000, 122, 12876. (e) Takahashi, T.; Li, S.; Huang, W.; Kong,
F.; Nakajima, K.; Shen, B.; Ohe, T.; Kanno, K. J. Org. Chem. 2006, 71,
7967. (f) Mondal, R.; Shah, B. K.; Neckers, D. C. J. Org. Chem. 2006, 71,
4085. (g) Chen, Z.; Muller, P.; Swager, T. M. Org. Lett. 2006, 8, 273. (h)
Chan, S. H.; Lee, H. K.; Wang, Y. M.; Fu, N. Y.; Chen, X. M.; Cai, Z. W.;
Wong, H. N. C. Chem. Commun. 2005, 66. (i) Chen, Y. L.; Hau, C. K.;
Wang, H.; He, H.; Wong, M. S.; Lee, A. W. M. J. Org. Chem. 2006, 71,
3512.
(6) (a) Wang, K. K. Chem. ReV. 1996, 96, 207. (b) Yang, Y.; Petersen,
J. L.; Wang, K. K. J. Org. Chem. 2003, 68, 5832. (c) Dai, W.; Petersen, J.
L.; Wang, K. K. Org. Lett. 2004, 6, 4355. (d) Kim, D.; Petersen, J. L.;
Wang, K. K. Org. Lett. 2006, 8, 2313. (e) Ma, S. M. Chem. ReV. 2005,
105, 2829. (f) Myers, A. G.; Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc.
1989, 111, 8057.
Among the numerous choices to generate the transient
o-bisallenyl intermediates,9 the 2,3-sigmatropic rearrange-
ment of propargylic sulfenate or sulfinate seems best suited
to our purpose. Such reactions are generally carried out under
very mild conditions and the yields of allenic products are
generally very high. More importantly, the sulfoxide or
sulfone functional groups produced after such rearrangements
can serve as the leaving groups to facilitate the post-
annulation elimination reaction. Such a strategy opened an
access to the tetracene derivatives with a facile one-pot four-
step reaction (rearrangement, two annulations, and elimina-
tion).
The strategy was first carried out with the simplest
substrate-R,R′-bis(phenylethynyl)-1,2-benzenedimethanol at
ambient temperature. With three different sulfenyl and
sulfinyl reagents (sulfenyl chloride, p-tolylsulfinyl chloride,
and p-nitrobenzenelsulfenyl chloride) of a wide range of
reactivity,10 we discovered that the reaction rates or the yields
of desired products are quite similar (Scheme 2). These
results indicated that the formation of the sulfenyl (or
sulfinyl) esters is not likely to be the rate-determining step.
Since the two annulation steps are likely to be reversible
before elimination occurs, the success of these reactions
(8) (a) Rodr´ıguez, D.; Castedo, L.; Dom´ınguez, D.; Saa´, C. Org. Lett.
2003, 5, 3119. (b) Kitagaki, S.; Ohdachi, K.; Mukai, C. Org. Lett. 2006, 8,
95.
(9) Krause, N.; Hashmi, A. K. Modern Allene Chemistry; Wiley-VCH:
Weinheim, Germany, 2004.
(10) (a) Braverman, S.; Mechoulam, H. Y. Isr. J. Chem. 1967, 5, 71.
(b) Braverman, S.; Stabinsky, Y. Isr. J. Chem. 1967, 5, 125. (c) Braverman,
S. Rearrangements involving sulfones. In The Chemistry of Sulphones and
Sulphoxides; Patai, S., Rappoport, Z., Stirling, C. J. M., Eds.; John Wiley
& Sons: New York, 1988, Chapter 13. (d) Braverman, S. Rearrangements
involving sulfoxides. In The Chemistry of Sulphones and Sulphoxides; Patai,
S., Rappoport, Z., Stirling, C. J. M., Eds.; John Wiley & Sons: New York,
1988, Chapter 14.
(7) (a) Braverman, S.; Duar, Y.; Segev, D. Tetrahetron. Lett. 1976, 36,
3181. (b) Braverman, S.; Duar, Y. J. Am. Chem. Soc. 1990, 112, 5830. (c)
Braverman, S.; Zafrani, Y.; Gottlieb, H. E. Tetrahedron 2001, 57, 9177.
(d) Braverman, S.; Cherkinsky, M.; Birsa, M. L.; Zafrani, Y. Eur. J. Org.
Chem. 2002, 3198.
2076
Org. Lett., Vol. 9, No. 11, 2007