2884
J. L. Duffy et al. / Bioorg. Med. Chem. Lett. 17 (2007) 2879–2885
2. Holst, J. J. Diabetologia 2006, 49, 253; Drucker, D. J. Cell
Metab. 2006, 3, 153; Zander, M.; Madsbad, S.; Madsen, J.
L.; Holst, J. J. Lancet 2002, 359, 824.
3. Deacon, C. F.; Holst, J. J. Int. J. Biochem. Cell Biol. 2006,
38, 831; Demuth, H.-U.; McIntosh, C. H. S.; Pederson, R.
A. Biochim. Biophys. Acta 2005, 1751, 33.
4. Augustyns, K.; Van der Veken, P.; Haemers, A. Expert
Opin. Ther. Pat. 2005, 15, 1354; Weber, A. E. J. Med.
Chem. 2004, 47, 4135.
5. Rosenblum, J. S.; Kozarich, J. W. Curr. Opinion Chem.
Biol. 2003, 7, 496; Sedo, A.; Malik, R. Biochem. Biophys.
Acta 2001, 1550, 107.
6. Lankas, G. R.; Leiting, B.; Sinha Roy, R.; Eiermann, G.
J.; Biftu, T.; Cahn, C.-C.; Edmondson, S. D.; Feeney, W.
P.; He, H.; Ippolito, D. E.; Kim, D.; Lyons, K. A.; Ok, H.
O.; Patel, R. A.; Petrov, A. N.; Pryor, K. A.; Qian, X.;
Reigle, L.; Woods, A.; Wu, J. K.; Zaller, D.; Zhang, X.;
Zhu, L.; Weber, A. E.; Thornberry, N. A. Diabetes 2005,
54, 2988.
7. (a) Xu, J.; Wei, L.; Mathvink, R.; He, J.; Park, Y.-J.; He,
H.; Leiting, B.; Lyons, K. A.; Marsilio, F.; Patel, R. A.;
Wu, J. K.; Thornberry, N. A.; Weber, A. E. Bioorg. Med.
Chem. Lett. 2005, 15, 2533; (b) Edmondson, S. D.;
Mastracchio, A.; Duffy, J. L.; Eiermann, G. J.; He, H.;
Ita, I.; Leiting, B.; Leone, J. F.; Lyons, K. A.; Mak-
arewicz, A. M.; Patel, R. A.; Petrov, A.; Wu, J. K.;
Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. Lett.
2005, 15, 3048; (c) Edmondson, S. D.; Mastracchio, A.;
Mathvink, R. J.; He, J.; Harper, B.; Park, Y.-J.; Beconi,
M.; Di Salvo, J.; Eiermann, G. J.; He, H.; Leiting, B.;
Leone, J. F.; Levorse, D. A.; Lyons, K.; Patel, R. A.;
Patel, S. B.; Petrov, A.; Scapin, G.; Shang, J.; Sinha Roy,
R.; Smith, A.; Wu, J. K.; Xu, S.; Zhu, B.; Thornberry, N.
A.; Weber, A. E. J. Med. Chem. 2006, 49, 3614.
8. Parmee, E. R.; He, J.; Mastracchio, A.; Edmondson, S.
D.; Colwell, L.; Eiermann, G.; Feeney, W. P.; Habulihaz,
B.; He, H.; Kilburn, R.; Leiting, B.; Lyons, K.; Marsilio,
F.; Patel, R. A.; Petrov, A.; Di Salvo, J.; Wu, J. K.;
Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. Lett.
2004, 14, 43; Caldwell, C. G.; Chen, P.; He, J.; Parmee, E.
R.; Leiting, B.; Marsilio, F.; Patel, R. A.; Wu, J. K.;
Eiermann, G. J.; Petrov, A.; He, H.; Lyons, K. A.;
Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. Lett.
2004, 14, 1265.
Figure 2. Compound 25 bound to the active site of DPP-4. The
overlay of 25 (yellow) with 5 (magenta, 2FJP.pdb) shows the similar
orientation of the two molecules. The interactions of 25 with DPP-4
are shown as red dotted lines.
mice. The compound reduced blood glucose excursion
in a dose-dependent manner from 0.1 mpk (ꢀ26%) to
3.0 mpk (ꢀ56%). This level of efficacy was not improved
over that observed previously with 3 in an identical
experiment, despite the diminished influence of serum
on the intrinsic potency of 25 (Tables 2 and 3).7b How-
ever, compound 25 afforded a substantially lower oral
exposure (nAUC) than 3 in rat PK studies (Tables 2
and 4). The diminished oral exposure, if operative in
mice as well, may have mitigated the improvements in
serum-shifted intrinsic potency achieved with 25.
The incorporation of structural features of the 4-amin-
ocyclohexylalanine lead series into the b-substituted
phenylalanine lead class of dipeptidyl peptidase IV
inhibitors afforded compounds with similar intrinsic
potency and diminished off-target activity. Further-
more, the derivatives incorporating the b-methyl substi-
tuent retained substantial potency in the presence of
human serum. However, the lower oral exposure at-
tained with these compounds may be the cause of the
lack of improved efficacy observed with 25 as com-
pared to analogous prior leads. Further optimization
of the PK exposure of this class is underway, and will
be reported in due course.
9. Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem.
Soc. 2002, 124, 7421.
10. For a related microwave-assisted sulfonamide arylation
using catalytic CuI, see He, H.; Wu, Y.-J. Tetrahedron
Lett. 2003, 44, 3385.
11. For assay conditions for the DPP-4 and QPP inhibition,
see Leiting, B.; Pryor, K. D.; Wu, J. K.; Marsilio, F.;
Patel, R. A.; Craik, C. S.; Ellman, J. A.; Cummings, R. T.;
Thornberry, N. A. Biochem. J. 2003, 371, 525; For assay
conditions for DPP8 and DPP9, see Ref. 6.
12. Vinogradov, S. A.; Wilson, D. F. Tetrahedron Lett. 1998,
39, 8935.
Acknowledgments
13. The X-ray crystal structure of 25 bound to the active site
of DPP-4 (Fig. 2) established unambiguously the 1,4-trans
relationship of the cyclohexyl substituents in this deriva-
tive. The single diastereomers 16–26 are all presumed to be
trans by analogy.
14. The structure of DPP-4 in a complex with 25 has been
deposited (PDB code 2OPH, RCSB ID code rcsb041425);
An alternative binding mode for compounds with similar
structural homology was recently discovered in these
laboratories. See Xu, J.; Wei, L.; Mathvink, R. J.;
Edmondson, S. D.; Eiermann, G. J.; He, H.; Leone, J.
F.; Leiting, B.; Lyons, K. A.; Marsilio, F.; Patel, R. A.;
Patel, S. B.; Petrov, A.; Scapin, G.; Wu, J. K.; Thornberry,
We are very grateful to Donald Hora, Judy Fenyk-Mel-
ody, Irene Capodanno, Paul Cunningham, Marcie Don-
nelly, James Hausamann, Christian Nunes, Xiaolan
Shen, John Strauss, and Kenneth Vakerich for in vivo
pharmacokinetic studies.
References and notes
1. Gautier, J. F.; Fetita, S.; Sobngwi, E.; Salaun-Marin, C.
Diabetes Metab. 2005, 31, 233.