Communications
PhSiCl3 nor PhSi(OMe)3 proved to be an effective coupling
partner; d) the cross-coupling reaction did occur in the absence
of 8% H2O, but less efficiently; the origin of this water (or
hydroxide) effect is not yet clear.
Keywords: amino alcohols · cross-coupling ·
homogeneous catalysis · nickel · silicon
.
[8] Bathophenanthroline proved to be ineffective (< 5% yield).
[9] a) In preliminary experiments under our standard conditions,
Hiyama cross-coupling reactions of hindered unactivated sec-
ondary bromides, unactivated secondary chlorides, and primary
halides have not been efficient (< 50% yield). We have not yet
explored the capacity of other nickel/amino alcohol catalysts to
achieve Hiyama reactions of these families of substrates; b) we
can efficiently cross-couple an unactivated secondary alkyl
bromide (> 80% yield) in the presence of an unactivated
secondary alkyl chloride (< 2% yield).
[10] a) We have established that gram-scale Hiyama cross-coupling
reactions proceed in good yield (ethyl 2-chloropropionate with
PhSiF3, 1.44 g (81%)); b) we could effect the selective cross-
coupling reaction (krel > 50) of an activated secondary bromide
(ethyl 2-bromoisovalerate) in the presence of an unactivated
secondary bromide (cyclohexyl bromide); c) a preliminary study
indicates that benzylic halides are not useful cross-coupling
partners under our standard conditions.
[11] To the best of our knowledge, no examples of nickel- or
palladium-catalyzed cross-coupling reactions of secondary a-
halocarbonyl compounds with aryl metal reagents (for example,
boron, silicon, tin, and zinc) have been described; couplings of
primary a-halocarbonyl compounds appear to be limited to
Suzuki reactions; for examples, see: a) M. Sato, N. Miyaura, A.
Suzuki, Chem. Lett. 1989, 1405 – 1408; b) L. J. Goossen, Chem.
Commun. 2001, 669 – 670; c) X.-x. Liu, M.-z. Deng, Chem.
Commun. 2002, 622 – 623; d) T.-Y. Lu, C. Xue, F.-T. Luo,
Tetrahedron Lett. 2003, 44, 1587 – 1590; e) Y.-Z. Duan, M.-Z.
Deng, Tetrahedron Lett. 2003, 44, 3423 – 3426.
[1] For reviews of the Hiyama reaction, see: a) S. E. Denmark, R. F.
Sweis in Metal-Catalyzed Cross-Coupling Reactions (Eds.: A.
de Meijere, F. Diederich), Wiley-VCH, New York, 2004, chap. 4;
b) T. Hiyama, E. Shirakawa, Top. Curr. Chem. 2002, 219, 61 – 85.
[2] D. A. Powell, G. C. Fu, J. Am. Chem. Soc. 2004, 126, 7788 – 7789;
See also: J.-Y. Lee, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 5616 –
5617.
[3] For reviews of metal-catalyzed cross-coupling reactions, see:
a) Metal-Catalyzed Cross-Coupling Reactions (Eds.: A. de Mei-
jere, F. Diederich), Wiley-VCH, New York, 2004; b) Handbook
of Organopalladium Chemistry for Organic Synthesis (Ed.: E.-i.
Negishi), Wiley Interscience, New York, 2002.
[4] For recent reviews of cross-coupling reactions of alkyl electro-
philes, see: a) A. C. Frisch, M. Beller, Angew. Chem. 2005, 117,
680 – 695; Angew. Chem. Int. Ed. 2005, 44, 674 – 688; b) M. R.
Netherton, G. C. Fu, Topics in Organometallic Chemistry:
Palladium in Organic Synthesis (Ed.: J. Tsuji), Springer, New
York, 2005; c) M. R. Netherton, G. C. Fu, Adv. Synth. Catal.
2004, 346, 1525 – 1532.
[5] For reviews of chiral bipyridine and phenanthroline ligands, see:
a) G. Chelucci, R. P. Thummel, Chem. Rev. 2002, 102, 3129 –
3170; b) A. V. Malkov, P. Kocovsky, Curr. Org. Chem. 2003, 7,
1737 – 1757; c) N. C. Fletcher, J. Chem. Soc. Perkin Trans. 1 2002,
1831 – 1842; d) E. Schoffers, Eur. J. Org. Chem. 2003, 1145 –
1152.
[6] F. Gonzµlez-Bobes, G. C. Fu, J. Am. Chem. Soc. 2006, 128, 5360 –
5361.
[7] a) In the absence of NiCl2·glyme or of norephedrine, no cross-
coupling was observed; b) the Hiyama reaction proceeded best
at high concentrations (0.5m); c) under these conditions, neither
3558
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 3556 –3558