are not unusually more reactive than would be predicted from
their Hammett substituent constants, but rather, substrates 1a–c
exhibit lower reactivity than would be expected due to stabilization
of the GS through resonance interactions. (4) The pyridinolysis
of 1a–j proceeds through a stepwise mechanism with the k2 step
being the RDS. (5) The RDS is not influenced by the nature of
the substituent X. However, the degree of bond formation (or the
effective charge on the nucleophilic site) in the TS becomes more
significant as the substituent X changes from a strong EDG to a
stronger EWG.
2 (a) F. M. Menger and J. H. Smith, J. Am. Chem. Soc., 1972, 94, 3824–
3829; (b) A. B. Maude and A. Williams, J. Chem. Soc., Perkin Trans. 2,
1997, 179–183.
3 (a) E. A. Castro, M. Aliaga and J. G. Santos, J. Org. Chem., 2005, 70,
2679–2685; (b) E. A. Castro, M. Gazitua and J. G. Santos, J. Org. Chem.,
2005, 70, 8088–8092; (c) E. A. Castro, M. Aliaga and J. G. Santos,
J. Org. Chem., 2004, 69, 6711–6714; (d) E. A. Castro, M. Cubillos and
J. G. Santos, J. Org. Chem., 2004, 69, 4802–4807; (e) E. A. Castro, M.
Cubillos, M. Aliaga, S. Evangelisti and J. G. Santos, J. Org. Chem.,
2004, 69, 2411–2416; (f) E. A. Castro, M. Acun˜a, C. Soto, C. Trujillo,
B. Va´squez and G. Santos, J. Phys. Org. Chem., 2008, 21, 816–822;
(g) B. Galabov, S. Ilieva, B. Hadjieva, Y. Atanasov Schaefer III and
H. F., J. Phys. Chem. A, 2008, 112, 6700–6707.
4 (a) I. H. Um, Y. M. Park, M. Fujio, M. Mishima and Y. Tsuno, J. Org.
Chem., 2007, 72, 4816–4821; (b) I. H. Um, J. Y. Lee, S. H. Ko and S. K.
Bae, J. Org. Chem., 2006, 71, 5800–5803; (c) I. H. Um, S. E. Jeon and
J. A. Seok, Chem.–Eur. J., 2006, 12, 1237–1243; (d) I. H. Um, J. Y. Lee,
H. W. Lee, Y. Nagano, M. Fujio and Y. Ysuno, J. Org. Chem., 2005,
70, 4980–4987; (e) I. H. Um, K. H. Kim, H. R. Prak, M. Fujio and Y.
Tsuno, J. Org. Chem., 2004, 69, 3937–3942.
5 (a) J. A. Ahn, Y. M. Park and I. H. Um, Bull. Korean Chem. Soc., 2009,
30, 214–218; (b) J. A. Seo, H. M. Lee and I. H. Um, Bull. Korean Chem.
Soc., 2008, 29, 1915–1919.
6 (a) I. H. Um, E. H. Kim and J. Y. Lee, J. Org. Chem., 2009, 74, 1212–
1217; (b) I. H. Um, S. J. Hwang, S. Yoon, S. E. Jeon and S. K. Bae,
J. Org. Chem., 2008, 73, 7671–7677; (c) I. H. Um, S. Yoon, H. R. Park
and H. J. Han, Org. Biomol. Chem., 2008, 6, 1618–1624; (d) I. H. Um,
S. J. Hwang, M. H. Baek and E. J. Park, J. Org. Chem., 2006, 71, 9191–
9197; (e) I. H. Um, E. Y. Kim, H. R. Park and S. E. Jeon, J. Org. Chem.,
2006, 71, 2302–2306; (f) I. H. Um, H. J. Han, M. H. Baek and S. Y.
Bae, J. Org. Chem., 2004, 69, 6365–6370.
Experimental
Materials
Compounds 1a–j were readily prepared from the reaction of
X-substituted benzoyl chloride with 2,4-dinitrophenol in the pres-
ence of triethylamine in anhydrous ether as reported previously.2
Their purity was confirmed from melting point and spectral data
such as 1H NMR. Pyridines and other chemicals were of the
highest quality available. Doubly glass distilled water was further
boiled and cooled under nitrogen just before use. Due to low
solubility of 1a–j in pure H2O, 80 mol% H2O/20 mol% DMSO
was used as the reaction medium.
7 (a) I. H. Um, J. Y. Hong and J. A. Seok, J. Org. Chem., 2005, 70, 1438–
1444; (b) I. H. Um, S. M. Chun, O. M. Chae, M. Fujio and Y. Tsuno,
J. Org. Chem., 2004, 69, 3166–3172; (c) I. H. Um, J. Y. Hong, J. J. Kim,
O. M. Chae and S. K. Bae, J. Org. Chem., 2003, 68, 5180–5185; (d) I. H.
Um, J. Y. Han and S. J. Hwang, Chem.–Eur. J., 2008, 14, 7324–7330;
(e) I. H. Um, Y. H. Shin, J. Y. Han and M. Mishima, J. Org. Chem.,
2006, 71, 7715–7720.
8 (a) H. K. Oh, J. Y. Oh, D. D. Sung and I. Lee, J. Org. Chem., 2005,
70, 5624–5629; (b) I. Lee and D. D. Sung, Curr. Org. Chem., 2004, 8,
557–567; (c) H. K. Oh, J. E. Park, D. D. Sung and I. Lee, J. Org. Chem.,
2004, 69, 9285–9288; (d) H. K. Oh, J. S. Ha, D. D. Sung and I. Lee,
J. Org. Chem., 2004, 69, 8219–8223; (e) H. K. Oh, J. E. Park, D. D.
Sung and I. Lee, J. Org. Chem., 2004, 69, 3150–3153; (f) H. K. Oh,
S. K. Kim, H. W. Lee and I. Lee, New J. Chem., 2001, 25, 313–317;
(g) H. K. Oh, S. K. Kim, I. H. Cho, H. W. Lee and I. Lee, J. Chem.
Soc., Perkin Trans. 2, 2000, 2306–2310; (h) W. M. Lim, W. K. Kim, H. J.
Jung and I. Lee, Bull. Korean Chem. Soc, 1995, 16, 252–256.
9 (a) B. J. Lumbiny and H. W. Lee, Bull. Korean Chem. Soc., 2008, 29,
2065–2068; (b) B. J. Lumbiny, K. K. Adhikar, B. S. Lee and H. W. Lee,
Bull. Korean Chem. Soc., 2008, 29, 1769–1773; (c) K. K. Adhikary, B. J.
Lumbiny, C. K. Kim and H. W. Lee, Bull. Korean Chem. Soc., 2008, 29,
851–855; (d) H. K. Oh, J. M. Lee, H. W. Lee and I. C. Lee, Int. J. Chem.
Kinet., 2004, 36, 434–440; (e) H. K. Oh, I. K. Kim, H. W. Lee and I. C.
Lee, J. Org. Chem., 2004, 69, 3806–3810.
10 M. J. Gresser and W. P. Jencks, J. Am. Chem. Soc., 1977, 99, 6970–6980.
11 (a) E. A. Castro and C. L. Santander, J. Org. Chem., 1985, 50, 3595–
3600; (b) E. A. Castro and J. L. Valdivia, J. Org. Chem., 1986, 51,
1668–1672; (c) E. A. Castro and G. B. Steinfort, J. Chem. Soc., Perkin
Trans. 2, 1983, 453–457.
12 (a) E. A. Castro, R. Aguayo, J. Bessolo and J. G. Santos, J. Org. Chem.,
2005, 70, 7788–7791; (b) E. A. Castro, R. Aguayo, J. Bessolo and
J. G. Santos, J. Org. Chem., 2005, 70, 3530–3536; (c) E. A. Castro, M.
Vivanco, R. Aguayo and J. G. Santos, J. Org. Chem., 2004, 69, 5399–
5404; (d) E. A. Castro, R. Aguayo and J. G. Santos, J. Org. Chem., 2003,
68, 8157–8161.
Kinetics
The kinetic study was performed using a UV-vis spectrophotome-
ter for slow reactions (t1/2 ≥ 10 s) or a stopped-flow spectropho-
tometer for fast reactions (t1/2 < 10 s) equipped with a constant
temperature circulating bath to keep the reaction temperature
at 25.0
0.1 ◦C. The reactions were followed by monitoring
the leaving 2,4-dinitrophenoxide at 410 nm. All reactions were
carried out under pseudo-first-order conditions in which the
pyridine concentration was at least 20 times greater than the
substrate concentration. The pyridine stock solution of ca. 0.2 M
was prepared by dissolving 2 equiv. of pyridine and 1 equiv. of
standardized HCl solution to keep the pH constant by making a
self-buffered solution.
Product analysis
2,4-Dinitrophenoxide was liberated quantitatively and identified
as one of the reaction products by comparison of the UV-vis
spectra after completing the reactions with those of authentic
samples under the same kinetic conditions.
Acknowledgements
This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
(2009-0075488). L. R. Im, E. H. Kim and J. H. Shin are grateful
for the BK 21 Scholarship.
13 (a) F. A. Carroll, Perspectives on Structure and Mechanism in Organic
Chemistry, Brooks/Cole, New York, 1998, pp. 371–386; (b) W. P.
Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New
York, 1969, pp. 480–483; (c) T. H. Lowry, K. S. Richardson, Mechanism
and Theory in Organic Chemistry, 3rd edn, Harper Collins Publishers,
New York, 1987, pp. 143–151.
References
14 (a) S. Swansburg, E. Buncel and R. P. Lemieux, J. Am. Chem. Soc.,
2000, 122, 6594–6600; (b) A. Pross, Theoretical & Physical Principles of
Organic Reactivity, Wiley & Sons, New York, 1995, pp. 165–169.
1 (a) W. P. Jencks, Chem. Rev., 1985, 85, 511–527; (b) E. A. Castro, Chem.
Rev., 1999, 99, 3505–3524; (c) M. I. Page and A. Williams, Organic and
Bio-organic Mechanisms, Longman, Singapore, 1997, Chapter 7.
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 3801–3806 | 3805
©