C O M M U N I C A T I O N S
Figure 1. Reaction of 2 with DNA containing (A) OxodG (3b) or (B)
Fapy•dG (4b) under oxidative conditions.
Figure 3. Average adduct yield with 2 in 287 nt duplex DNA (2.5 pmol)
as a function of 137Cs dose. Circles, Na2IrCl6; squares, K3Fe(CN)6.
monocyte cells were subjected to γ-radiolysis.21,22 In summary, we
have developed a simple and sensitive method for quantifying
OxodG and Fapy•dG, two important DNA lesions. This tool will
be widely accessible to researchers studying the effects of oxidative
stress on DNA. In addition, the fluorescence assay should be
generally applicable to the quantification of other lesions that can
be selectively tagged with biotin.
Acknowledgment. We are grateful for financial support from
the National Institutes of Health (CA-074954). We thank Professor
Gerald Meyer, Mr. James Gardner, and Dr. Shanta Dhar for
assistance with the cyclic voltammetry experiment.
Supporting Information Available: Procedures for synthesis and
characterization of all molecules, and all other experiments. ESI-MS
and MALDI-TOF MS from experiments described herein. This material
Figure 2. Average adduct yield with 2 in DNA as a function of sequence.
(A) OxodG (3a-d). (B) Fapy•dG (4a-d). Dark gray, Na2IrCl6; black, Na2-
IrBr6; light gray, K3Fe(CN)6.
References
(1) Neeley, W. L.; Essigmann, J. M. Chem. Res. Toxicol. 2006, 19, 491-
505.
Scheme 1. Fluorescence Detection of OxodG and Fapy•dG
(2) Malins, D. C.; Hellstrom, K. E.; Anderson, K. M.; Johnson, P. M.; Vinson,
M. A. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5937-5941.
(3) Kamiya, H. Nucleic Acids Res. 2003, 31, 517-531.
(4) Greenberg, M. M. Biochem. Soc. Trans. 2004, 32, 46-50.
(5) Kalam, M. A.; Haraguchi, K.; Chandani, S.; Loechler, E. L.; Moriya, M.;
Greenberg, M. M.; Basu, A. K. Nucleic Acids Res. 2006, 34, 2305-2315.
(6) Malins, D. C.; Johnson, P. M.; Barker, E. A.; Polissar, N. L.; Wheeler, T.
M.; Anderson, K. M. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 5401-
5406.
(7) Dizdaroglu, M.; Jaruga, P.; Rodriguez, H. Crit. ReV. Oxid. Stress Aging
2003, 1, 165-189.
(8) Cadet, J.; Douki, T.; Gasparutto, D.; Ravanat, J. L. Mutat. Res. 2003,
531, 5-23.
(9) Collins, A. R.; Cadet, J.; Moeller, L.; Poulsen, H. E.; Vina, J. Arch.
Biochem. Biophys. 2004, 423, 57-65.
(10) Dizdaroglu, M. Free Radical Res. 1998, 29, 551-563.
(11) Cadet, J.; D’Ham, C.; Douki, T.; Pouget, J. P.; Ravanat, J. L.; Sauvaigo,
S. Free Radical Res. 1998, 29, 541-550.
(12) Lhomme, J.; Constant, J. F.; Demeunynck, M. Biopolymers 1999, 52, 65-
83.
(13) Sato, K.; Greenberg, M. M. J. Am. Chem. Soc. 2005, 127, 2806-2807.
(14) Xue, L.; Greenberg, M. M. Angew. Chem., Int. Ed. 2007, 46, 561-564.
(15) Hosford, M. E.; Muller, J. G.; Burrows, C. J. J. Am. Chem. Soc. 2004,
126, 9540-9541.
dose using Na2IrCl6 and K3Fe(CN)6 as oxidants (Figure 3). The
adduct yield varied linearly with dose when either oxidant was used.
The amounts of OxodG and Fapy•dG per dose (Gray) of radiation
were determined (eqs 1 and 2) using the average yields of adduct
formation established from experiments with 3 and 4 (Figure 2).16
Femtomoles of adduct(s) were readily detectable using this method.
The data reveal that the ratio of Fapy•dG to OxodG formed in
(16) See Supporting Information.
(17) Huber, M.; Pelletier, J. G.; Torossian, K.; Dionne, P.; Gamache, I.; Charest-
Gaudreault, R.; Audette, M.; Poulin, R. J. Biol. Chem. 1996, 271, 27556-
27563.
(18) Hickerson, R. P.; Prat, F.; Muller, J. G.; Foote, C. S.; Burrows, C. J. J.
Am. Chem. Soc. 1999, 121, 9423-9428.
(19) Riviere, J.; Bergeron, F.; Tremblay, S.; Gasparutto, D.; Cadet, J.; Wagner,
J. R. J. Am. Chem. Soc. 2004, 126, 6548-6549.
Yd. Adduct (Na2IrCl6) ) (0.88)OxodG + (0.81)Fapy•dG (1)
(20) Zhou, M.; Diwu, Z.; Panchuk-Voloshina, N.; Haugland, R. P. Anal.
Biochem. 1997, 253, 162-168.
(21) Gajewski, E.; Rao, G.; Nackerdien, Z.; Dizdaroglu, M. Biochemistry 1990,
29, 7876-7882.
Yd. Adduct (K3Fe(CN)6) ) (0.79)OxodG
(2)
(22) Pouget, J. P.; Frelon, S.; Ravanat, J. L.; Testard, I.; Odin, F.; Cadet, J.
Radiat. Res. 2002, 157, 589-595.
aqueous solution by 137Cs equals 1.12. This is higher than the ratio
reported when chromatin is irradiated but lower than when
JA072174N
9
J. AM. CHEM. SOC. VOL. 129, NO. 22, 2007 7011