Bis(phosphinimino)methanide Rare Earth Amides
FULL PAPER
(m, 5H; Ph); 13C{1H} NMR (C6D6, 100 MHz, 258C): d=10.6, 23.5, 24.5,
26.6, 31.0, 35.4, 37.2, 44.1, 60.9, 128.3, 130.0, 135.1, 135.4 ppm.
1996, 15, 1765–1784; d) P. W. Roesky, U. Denninger, C. L. Stern,
T. J. Marks, Organometallics 1997, 16, 4486–4492.
[5] M. Giardello, V. P. Conticello, L. Brard, M. R. GagnØ, T. J. Marks, J.
Am. Chem. Soc. 1994, 116, 10241–10254.
3-Ethyl-2-azaspiro
d=0.76 (t, J
(1H,1H)=7.08 Hz, 3H), 0.87 (m, 1H), 1.14–1.31 (m, 12H),
1.57 (m, 1H), 2.44 (d, J
(1H,1H)=9.6 Hz, 1H), 2.59 (d, J(1H,1H)=10.8 Hz,
[4.5]decane (6d): 1HNMR (C 6D6, 400 MHz, 258C):
ACHTREUNG
[6] a) P. L. Watson, J. Am. Chem. Soc. 1982, 104, 337–339; b) P. L.
Watson, G. W. Parshall, Acc. Chem. Res. 1995, 28, 51–56; c) E. B.
Coughlin, J. E. Bercaw, J. Am. Chem. Soc. 1992, 114, 7607–7608;
d) P. J. Shapiro, E. E. Bunel, W. P. Schaefer, J. E. Bercaw, Organo-
metallics 1990, 9, 867–876; e) S. Hajela, J. E. Bercaw, Organometal-
lics 1994, 13, 1147–1154; f) M. A. Giardello, Y. Yamamoto, L.
Brard, T. J. Marks, J. Am. Chem. Soc. 1995, 117, 3276–3277.
[7] a) E. E. Bunel, B. J. Burger, J. E. Bercaw, J. Am. Chem. Soc. 1988,
110, 976–981; b) W. E. Piers, P. J. Shapiro, E. E. Bunel, J. E. Bercaw,
Synlett 1990, 2, 74–81.
A
N
1H), 2.75–2.82 ppm (m, 1H); 13C{1H} NMR (C6D6, 100 MHz, 258C): d=
11.4, 23.4, 23.6, 25.9, 29.0, 36.7, 38.0, 42.9, 59.9 ppm; MS (EI): m/z (%):
167 [M]+ (14), 138 [MꢀC2H5]+ (100).
3-Propyl-2-azaspiro
258C): d=0.89 (t, J
2H), 1.98 (s, 2H), 2.12 (t,
(1H,1H)=1.72 Hz, 2H); 13C{1H} NMR (C6D6, 100 MHz, 258C): d=14.2,
[4.5]dec-2-ene (7b): 1HNMR (C 6D6, 400 MHz,
ACHTREUNG
J
ACHTREUNG
J
ACHTREUNG
19.9, 24.0, 26.2, 36.2, 37.4, 42.4, 50.0, 73.0, 175.1 ppm; MS (EI): m/z (%):
179 [M]+ (44), 151 [MꢀC2H4]+ (100), 136 [MꢀC3H7]+ (15).
[8] G. Jeske, H. Lauke, H. Mauermann, P. N. Swepston, H. Schumann,
T. J. Marks, J. Am. Chem. Soc. 1985, 107, 8091–8103.
2-(Phenylsilyl)-3-propyl-2-azaspiro
400 MHz, 258C): d=0.79 (t, J
1.31 (m, 12H), 1.62 (m, 3H), 2.73 (d, J
C
AHCTREUNG
[9] a) M. R. GagnØ, T. J. Marks, J. Am. Chem. Soc. 1989, 111, 4108–
4109; b) M. R. GagnØ, C. L. Stern, T. J. Marks, J. Am. Chem. Soc.
1992, 114, 275–294; c) Y. Li, T. J. Marks, J. Am. Chem. Soc. 1996,
118, 9295–9306; d) P. W. Roesky, C. L. Stern, T. J. Marks, Organo-
metallics 1997, 16, 4705–4711; e) Y. Li, T. J. Marks, J. Am. Chem.
Soc. 1998, 120, 1757–1771; f) V. M. Arredondo, F. E. McDonald,
T. J. Marks, J. Am. Chem. Soc. 1998, 120, 4871–4872; g) V. M. Arre-
dondo, S. Tian, F. E. McDonald, T. J. Marks, J. Am. Chem. Soc.
1999, 121, 3633–3639; h) S. Hong, T. J. Marks, J. Am. Chem. Soc.
2002, 124, 7886–7887; i) J.-S. Ryu, G. Y. Li, T. J. Marks, J. Am.
Chem. Soc. 2003, 125, 12584–12605.
[10] a) S. P. Nolan, M. Porchia, T. J. Marks, Organometallics 1991, 10,
1450–1457; b) T. Sakakura, H.-J. Lautenschläger, M. Tanaka, J.
Chem. Soc. Chem. Commun. 1991, 40–41; c) G. A. Molander, P. J.
Nichols, J. Am. Chem. Soc. 1995, 117, 4414–4416; d) G. A. Moland-
er, W. A. Retsch, Organometallics 1995, 14, 4570–4575.
[11] P.-F. Fu, L. Brard, Y. Li, T. J. Marks, J. Am. Chem. Soc. 1995, 117,
7157–7168.
[12] a) G. A. Molander, D. Pfeiffer, Org. Lett. 2001, 3, 361–363; b) K. N.
Harrison, T. J. Marks, J. Am. Chem. Soc. 1992, 114, 9220–9221;
c) E. A. Bijpost, R. Duchateau, J. H. Teuben, J. Mol. Catal. A 1995,
95, 121–128.
[13] a) M. R. Douglass, T. J. Marks, J. Am. Chem. Soc. 2000, 122, 1824–
1825; b) M. R. Douglass, C. L. Stern, T. J. Marks, J. Am. Chem. Soc.
2001, 123, 10221–10238.
[14] a) M. R. Bürgstein, H. Berberich, P. W. Roesky, Organometallics
1998, 17, 1452–1454; b) M. R. Bürgstein, H. Berberich, P. W.
Roesky, Chem. Eur. J. 2001, 7, 3078–3085.
[15] a) Y. K. Kim, T. Livinghouse, J. E. Bercaw, Tetrahedron Lett. 2001,
42, 2933–2935; b) Y. K. Kim, T. Livinghouse, Angew. Chem. 2002,
114, 3797–3799; Angew. Chem. Int. Ed. 2002, 41, 3645–3647;
c) Y. K. Kim, T. Livinghouse, Y. Horino, J. Am. Chem. Soc. 2003,
125, 9560–9561.
G
(m, 5H; Ph); 13C{1H} NMR (C6D6, 100 MHz, 258C): d=14.5, 19.9, 23.5,
24.5, 26.7, 35.4, 37.3, 40.8, 44.2, 59.3, 128.3, 130.0, 135.1, 136.0 ppm.
3-Propyl-2-azaspiro
d=0.87 (t, J
(1H,1H)=7.2 Hz, 3H), 1.18–1.31 (m, 13H), 1.43 (m, 4H),
1.50 (m, 1H), 2.48 (d, J
(1H,1H)=10.72 Hz, 1H), 2.67 (d, J(1H,1H)=
A
ACHTREUNG
A
ACHTREUNG
10.72 Hz, 1H), 2.84–2.91 ppm (m, 1H); 13C{1H} NMR (C6D6, 100 MHz,
258C): d=14.5, 20.8, 23.9, 24.2, 26.4, 37.1, 38.4, 38.7, 43.1, 58.4 ppm; MS
(EI): m/z (%): 181 [M]+ (12), 138 [MꢀC3H7]+ (100).
2-Methyl-1-(phenylsilyl)piperidine (19c): 1HNMR (C 6D6, 400 MHz,
258C): d=1.05 (d, J
A
1.48 (m, 2H), 2.70 (m, 1H), 2.94 (m, 1H), 3.08 (m, 1H), 5.09 (d,
J
(1H,1H)=2.80 Hz, 2H; PhSiH2), 7.10–7.58 ppm (m, 5H; Ph);
R
13C{1H} NMR (C6D6, 100 MHz, 258C): d=20.4, 23.1, 27.6, 34.3, 47.0, 51.9,
128.3, 129.9, 134.7, 136.0 ppm.
X-raycrystallographic studies of 1d and 2a–e : Crystals of 1d suitable for
X-ray crystallography were obtained from a concentrated THF solution.
Crystals of 2a–e were grown from saturated pentane solutions. A suitable
crystal was in each case covered in mineral oil (Aldrich) and mounted
onto a glass fiber. The crystal was transferred directly to the ꢀ738C cold
N2 stream of a Stoe IPDS 2T or a Bruker CCD Apex 1000 diffractometer.
Subsequent computations were carried out on an Intel Pentium IV PC.
CCDC-624685
(1d),
-286336
(2b),
-624686
(2a),
-624687 (2c), -624688 (2d), and -624689 (2e) contain the supplementary
crystallographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
Acknowledgements
[16] P. N. OꢁShaughnessy, P. D. Knight, C. Morton, K. M. Gillespie, P.
Scott, Chem. Commun. 2003, 1770–1771.
This work was supported by the Deutsche Forschungsgemeinschaft.
[17] a) D. V. Gribkov, K. C. Hultzsch, F. Hampel, Chem. Eur. J. 2003, 9,
4796–4810; b) K. C. Hultzsch, D. V. Gribkov, Chem. Commun. 2004,
730–731; c) K. C. Hultzsch, F. Hampel, T. Wagner, Organometallics
2004, 23, 2601–2612.
[18] S. Hong, S. Tian, M. V. Metz, T. J. Marks, J. Am. Chem. Soc. 2003,
125, 14768–14783.
[1] Review: a) F. T. Edelmann in Comprehensive Organometallic Chem-
istry II, Vol. 4 (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Per-
gamon Press, Oxford, 1995, pp. 11–210; b) F. T. Edelmann, Top.
Curr. Chem. 1996, 179, 247–276; c) G. A. Molander, Top. Organo-
met. Chem. 1999, 2, 119–154; d) G. A. Molander, J. A. C. Romero,
Chem. Rev. 2002, 102, 2161.
[19] P. Imhoff, J. H. Guelpen, K. Vrieze, W. J. J. Smeets, A. L. Spek, C. J.
Elsevier, Inorg. Chim. Acta 1995, 235, 77–88.
[20] a) M. W. Avis, M. E. van der Boom, C. J. Elsevier, W. J. J. Smeets,
A. L. Spek, J. Organomet. Chem. 1997, 527, 263–276; b) M. W. Avis,
C. J. Elsevier, J. M. Ernsting, K. Vrieze, N. Veldman, A. L. Spek,
K. V. Katti, C. L. Barnes, Organometallics 1996, 15, 2376–2392;
c) M. W. Avis, K. Vrieze, H. Kooijman, N. Veldman, A. L. Spek,
C. J. Elsevier, Inorg. Chem. 1995, 34, 4092–4105; d) P. Imhoff, R.
van Asselt, J. M. Ernsting, K. Vrieze, C. J. Elsevier, W. J. J. Smeets,
A. L. Spek, A. P. M. Kentgens, Organometallics 1993, 12, 1523–
1536.
[2] W. J. Evans, I. Bloom, W. E. Hunter, J. L. Atwood, J. Am. Chem.
Soc. 1983, 105, 1401–1403.
[3] a) H. Mauermann, P. N. Swepston, T. J. Marks, Organometallics
1985, 4, 200–202; b) G. Jeske, H. Lauke, H. Mauermann, H. Schu-
mann, T. J. Marks, J. Am. Chem. Soc. 1985, 107, 8111–8118.
[4] a) V. P. Conticello, L. Brard, M. A. Giardello, Y. Tsuji, M. Sabat,
C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1992, 114, 2761–2762;
b) D. Stern, M. Sabat, T. J. Marks, J. Am. Chem. Soc. 1992, 114,
9558–9575; c) C. M. Haar, C. L. Stern, T. J. Marks, Organometallics
Chem. Eur. J. 2007, 13, 3606 – 3616
ꢀ 2007 Wiley-VCHVerlag GmbH& Co. KGaA, Weinheim
3615