Angewandte
Chemie
Farkens, A. Fischer, P. G. Jones, R. Schmutzler, Z. Anorg. Allg.
thermally transformed back to the Na!B interaction in
solution. These results extend the synthetic interest of
ambiphilic compounds which have recently led to spectacular
achievements not only as bifunctional organocatalysts,[14] but
also as molecular probes[15,16] and dihydrogen activators.[17]
Accordingly, ambiphilic derivatives may be considered gen-
eral scaffolds for new photoisomerizable systems,[18] whose
physicochemical properties might be finely tuned. With this in
mind, further investigations will focus on the structural and
electronic factors governing the coordination isomerization of
such heterodienes.
Chem. 1994, 620, 707 – 715; f) K. Bieger, J. Tejeda, R. RØau, F.
Dahan, G. Bertrand, J. Am. Chem. Soc. 1994, 116, 8087 – 8094;
g) P. Molina, C. López-Leonardo, J. Llamas-Botía, C. Foces-
Foces, C. Fernµndez-Castaæo, Tetrahedron 1996, 52, 9629 – 9642;
h) M. Alajarín, P. Molina, A. López-Lµzaro, C. Foces-Foces,
Angew. Chem. 1997, 109, 147 – 150; Angew. Chem. Int. Ed. Engl.
1997, 36, 67 – 70; i) M. Alajarín, A. Vidal, C. López-Leonardo, J.
Bernµ, M. C. Ramírez de Arellano, Tetrahedron Lett. 1998, 39,
7807 – 7810; j) X. Liu, N. Thirupathi, I. A. Guzei, J. G. Verkade,
Inorg. Chem. 2004, 43, 7431 – 7440.
[4] For examples of transition-metal complexes of phosphazides,
see: a) G. L. Hillhouse, G. V. Goeden, B. L. Haymore, Inorg.
Chem. 1982, 21, 2064 – 2071; b) K. Bieger, G. Bouhadir, R. RØau,
F. Dahan, G. Bertrand, J. Am. Chem. Soc. 1996, 118, 1038 – 1044;
c) A. A. Danopoulos, R. S. Hay-Motherwell, G. Wilkinson, S. M.
Cafferkey, T. K. N. Sweet, M. B. Hursthouse, J. Chem. Soc.
Dalton Trans. 1997, 3177 – 3184; d) V. Cadierno, M. Zablocka, B.
Donnadieu, A. Igau, J.-P. Majoral, A. Skrowronska, Chem. Eur.
J. 2000, 6, 345 – 352; e) L. LePichon, D. W. Stephan, Inorg.
Chem. 2001, 40, 3827 – 3829.
[5] a) M. Alajarin, C. Conesa, H. S. Rzepa, J. Chem. Soc. Perkin
Trans. 2 1999, 1811 – 1814; b) C. Widauer, H. Grützmacher, I.
Shevchenko, V. Gramlich, Eur. J. Inorg. Chem. 1999, 1659 – 1664;
c) W. Q. Tian, Y. A. Wang, J. Org. Chem. 2004, 69, 4299 – 4308.
[6] a) S. Bontemps, H. Gornitzka, G. Bouhadir, K. Miqueu, D.
Bourissou, Angew. Chem. 2006, 118, 1641 – 1644; Angew. Chem.
Int. Ed. 2006, 45, 1611 – 1614; b) S. Bontemps, G. Bouhadir, K.
Miqueu, D. Bourissou, J. Am. Chem. Soc. 2006, 128, 12056 –
12057.
Experimental Section
All reactions and manipulations were carried out under an atmos-
phere of dry argon, using standard Schlenk techniques. All NMR
spectra were recorded at 293 K unless otherwise stated.
2: Phenylazide (240 mg) was added to a solution of 1 (150 mg) in
toluene (1.5 mL) at room temperature. After 48 h, the solvent and
excess azide were removed under vacuum. The resulting solid was
washed with pentane to give spectroscopically pure material (180 mg,
94% yield); m.p. 220–2228C; 31P{1H} NMR (121.5 MHz, CDCl3): d =
+ 61.0 ppm; 11B NMR (96.3 MHz, CDCl3): d = + 2.1 ppm; EIMS
(70 eV): m/z (%): 561 (< 1) [M+], 442 (25) [MꢀMes]+.
3: A powdered sample of 2 (50 mg) was heated to melting point
under vacuum until no further loss of nitrogen was observed
(approximately 5 min). The resulting light yellow solid was washed
with pentane and recrystallized from diethyl ether at ꢀ188C to give 3
as colorless crystals (36 mg, 72% yield); m.p. 217–2198C; 31P{1H}
NMR (121.5 MHz, C6D6): d = + 55.8 ppm; 11B NMR (96.3 MHz,
C6D6): d = + 6.8 ppm; EIMS (70 eV): m/z (%): 533 (< 1) [M+], 490
(< 1) [MꢀiPr]+, 414 (100) [MꢀMes]+.
[7] See the Supporting Information for details.
[8] CCDC-631086–631090 contain the supplementary crystallo-
graphic data for compounds 2–6, respectively, for this paper.
These data can be obtained free of charge from The Cambridge
request/cif.
4: A solution of 2 (60 mg) in THF was irradiated with a 312 nm
UV lamp at room temperature for 4 h. The solution was warmed to
room temperature and the solvent was removed under vacuum. The
resulting solid was washed with pentane and recrystallized from THF
at ꢀ188C to give colorless crystals (50 mg, 83% yield): m.p. 208–
2108C; 31P{1H} NMR (121.5 MHz, CDCl3): d = + 34.7 ppm; 11B NMR
(96.3 MHz, CDCl3): d = + 5.4 ppm; EIMS (70 eV): m/z (%): 561 (< 1)
[M+], 442 (25) [MꢀMes]+.
[9] This Na!B interaction is apparently enforced by the proximity
of the N and B atoms. Aryl dimesityl boranes do not normally
bind fragments larger than fluoride which makes them suitable
groups for optical and electronic systems. For example, see: C. D.
Entwistle, T. B. Marder, Chem. Mater. 2004, 16, 4574 – 4585.
[10] In such systems, the Na!B (or Nb!B) interaction is inherently
=
related to a formal E (or Z) configuration of the P N skeleton,
Received: December 15, 2006
Revised: January 31, 2007
Published online: March 22, 2007
with the phenyl ring at the P atom being antiperiplanar (or
synperiplanar) to the Nb atom. As a result, the geometry of such
phosphazide and phosphazine skeletons can be described by
three independent parameters: the s-cis/s-trans arrangement of
Keywords: boranes · isomerization · phosphazides ·
.
=
=
the PNNN or PNNC fragment, the E or Z terminal N N or N C
bond, and the Na!B or Nb!B interaction.
phosphorus heterocycles · photochemistry
[11] Rapid s-cis or s-trans equilibration has been suggested for a
macrobicyclic tris(phosphazide) on the basis of VTP NMR
experiments; see Ref. [3i].
[1] Y. G. Gololobov, L. F. Kasukhin, Tetrahedron 1992, 48, 1353 –
1406.
[2] S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem.
2005, 117, 5320 – 5374; Angew. Chem. Int. Ed. 2005, 44, 5188 –
5240.
[3] For examples of free phosphazides, see: a) A. N. Chernega,
M. Y. Antipin, Y. T. Struchkov, I. E. Boldeskul, M. P. Pono-
marchuk, L. F. Kasukhin, V. P. Kukhar, Zh. Obshch. Khim. 1984,
54, 1979 – 1985; b) C. G. Chidester, J. Szmuszkovicz, D. J.
Duchamp, L. G. Laurian, J. P. Freeman, Acta Crystallogr. Sect.
C 1988, 44, 1080 – 1083; c) A. N. Chernega, M. Y. Antipin, Y. T.
Struchkov, M. P. Ponomarchuk, L. F. Kasukhin, V. P. Kukhar,
Zh. Obshch. Khim. 1989, 59, 1256 – 1261; d) A. A. I. Tolmachev,
A. N. Kostyuk, E. S. Kozlov, A. P. Polishchu, A. N. Chernega,
Zh. Obshch. Khim. 1992, 62, 2675 – 2683; e) J. R. Goerlich, M.
[12] For a similar structure reported for the phosphazine adduct
=
=
derived from Ph2P(Ph)C C(Bu)BBu2 and PhC( N2)C(O)Ph,
see: A. S. Balueva, E. R. Mustakimov, G. N. Nikonov, A. P.
Pisarevskii, Y. T. Struchkov, I. A. Litvinov, R. R. Musin, Izv.
Akad. Nauk Ser. Khim. 1996, 8, 2070 – 2074.
[13] For metal phosphazine complexes, see a) J. Louie, R. H. Grubbs,
Organometallics 2001, 20, 481 – 484; b) V. Cadierno, M.
Zablocka, B. Donnadieu, A. Igau, J.-P. Majoral, New J. Chem.
2003, 27, 675 – 679.
[14] a) G. J. Rowlands, Tetrahedron 2001, 57, 1865 – 1882; b) H.
Grꢀger, Chem. Eur. J. 2001, 7, 5246 – 5251; c) M. Shibasaki, M.
Kanai, K. Funabashi, Chem. Commun. 2002, 1989 – 1999; d) J.-
A. Ma, D. Cahard, Angew. Chem. 2004, 116, 4666 – 4683; Angew.
Chem. Int. Ed. 2004, 43, 4566 – 4583.
Angew. Chem. Int. Ed. 2007, 46, 3333 –3336
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3335