Journal of the American Chemical Society
Page 4 of 5
Funding Sources
1
2
The authors declare no competing financial interest.
3
4
ACKNOWLEDGMENT
Dedicated to Prof. Teruaki Mukaiyama in celebration of his
90th birthday (Sotsuju). This work was financially supꢀ
ported by JSPS KAKENHI Grant Numbers JP26105723,
JP17H03054 and JP15H05810 in Precisely Designed Cataꢀ
lysts with Customized Scaffolding.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) For reviews on chiral Brønsted acids. (a) Akiyama, T. Chem. Rev.
2007, 107, 5744. (b) Terada, M. Synthesis 2010, 2010, 1929. (c)
Kampen, D.; Reisinger, C. M.; List, B. Top. Curr. Chem. 2010, 291,
395. (d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev.
2014, 114, 9047. (e) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115,
9277.
To consider the active species in situ, ESIꢀMS analysis
of the catalyst was carried out. As a result, a variety of
BINSA trimers [m/z = 2150–2230], possibly with cluster
structures, were exclusively observed (see the SI).
Moreover, a kinetics study was conducted for a 3:1:3
complex of (R)ꢀ1a/Mg/K, 2a, and 3a. The results
showed firstꢀorder dependency for the catalyst as well as
zeroꢀorder dependency for 2a and firstꢀorder dependenꢀ
cy for 3a (Figure 2, also see the SI). This may support
the presence of a 3:1:3 complex of (R)ꢀ1a/Mg/K, and the
rateꢀdetermining step might be the addition of 3a to acꢀ
tivated 2a. At this preliminary stage, possible transition
states cannot be considered, since the position of the
active site (H+) has not been specified, although the
Brønsted acid center itself should be essential.
(2) (a) Hatano, M.; Sugiura, Y.; Ishihara, K. Tetrahedron: Asymmetry
2010, 21, 1311. (b) Hatano, M.; Ozaki, T.; Nishikawa, K.; Ishihara, K. J.
Org. Chem. 2013, 78, 10405. (c) Hatano, M.; Ishihara, K. Asian J. Org.
Chem. 2014, 3, 352. Also see our original paper of 3,3’ꢀunsubstituted
BINSA. (d) Hatano, M.; Maki, T.; Moriyama, K.; Arinobe, M.; Ishihara,
K. J. Am. Chem. Soc. 2008, 130, 16858. (e) Hatano, M.; Sugiura, Y.;
Akakura, M.; Ishihara, K. Synlett 2011, 2011, 1247. (f) Hatano, M.; Ozaꢀ
ki, T.; Sugiura, Y.; Ishihara, K. Chem. Commun. 2012, 48, 4986.
(3) pKa (DMSO) of (R)ꢀ3,3’ꢀunsubstituted BINSA is –9.06. Yang,
C.; Xue, X.ꢀS.; Li, X.; J.ꢀP. Cheng, J. Org. Chem. 2014, 79, 4340.
(4) We had a similar experience during the development of chiral
calcium phosphates (a) Hatano, M.; Moriyama, K.; Maki, T.; Ishihara,
K. Angew. Chem. Int. Ed. 2010, 49, 3823. Also see, (b) Klussmann, M.;
Ratjen, L.; Hoffmann, S.; Wakchaure, V.; Goddard, R.; List, B. Synlett
2010, 2010, 2189. (c) Terada, M.; Kanomata, K. Synlett 2011, 2011,
1255. (d) Akiyama, T. Synlett 2016, 27, 542.
(5) Shibasaki pioneeringly developed chiral heterobimetallic
M3[Ln(binol)3] catalysts for a variety of asymmetric reactions. See a
review, Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187.
(6) Uddin, N.; Ulicki, J. S.; Foersterling, F. H.; Hossain, M. M. Tet-
rahedron Lett. 2011, 52, 4353.
(7) For reviews: (a) Wang, G. AntiꢀInfect. Agents Med. Chem. 2008,
7, 32. (b) Cassady, J. M.; Chan, K. K.; Floss, H. G.; Leistner, E. Chem.
Pharm. Bull. 2004, 52, 1.
(8) (a) Davies, S. G.; Garner, A. C.; Roberts, P. M.; Smith, A. D.;
Sweet, M. J.; Thomson, J. E. Org. Biomol. Chem. 2006, 4, 2753. (b)
Lait, S. M.; Rankic, D. A.; Keay, B. A. Chem. Rev. 2007, 107, 767.
(9) Diastereoselective cycloaddition. (a) Richter, H.; Fröhlich, R.;
Daniliuc, C.ꢀG.; Mancheño, O. G. Angew. Chem. Int. Ed. 2012, 51,
8656. (b) Spreider, P. A.; Haydl, A. M.; Heinrich, M.; Breit, B. Angew.
Chem. Int. Ed. 2016, 55, 15569.
(10) (a) Drury, III, W. J.; Ferraris, D.; Cox, C.; Young, B.; Lectka, T.
J. Am. Chem. Soc. 1998, 120, 11006. (b) Yao, S.; Fang, X.; Jørgensen,
K. A. Chem. Commun. 1998, 2547. (c) Ferraris, D.; Young, B.; Cox, C.;
Dudding, T.; Drury, III, W. J.; Ryzhkov, L.; Taggi, A. W.; Lectka, T. J.
Am. Chem. Soc. 2002, 124, 67. (d) Caplan, N. A.; Hancock, F. E.; Page
P. C. B.; Hutchings, G. H. Angew. Chem. Int. Ed. 2004, 43, 1685. (e)
Momiyama, N.; Okamoto, H.; Shimizu, M.; Terada, M. Chirality 2015,
27, 464. (f) Momiyama, N.; Okamoto, H.; Kikuchi, J.; Korenaga, T.;
Terada, M. ACS Catal. 2016, 6, 1198.
Figure 2. Kinetics study for the catalyst, 2a, and 3a.
y = 1.18x – 1.82
y = 0.0135x – 3.17
y = 0.978x – 8.24
ln [3:1:3 catalyst (mM)]
ln [2a (mM)]
ln [3a (mM)]
In summary, we have developed for the first time a
chiral magnesium potassium binaphthyldisulfonate clusꢀ
ter, which can catalyze a highly enantioselective cyꢀ
cloaddition of styrenes with aldimines. We serendipiꢀ
tously discovered that the strong Brønsted acidity of
unoptimized catalysts dissolved drying agents and took
up leached Mg2+ and K+. Mechanistic insights were
supported by Xꢀray, ESIꢀMS and ICPꢀOES analyses of
the clusters, a kinetics study, and control experiments.
Moreover, synthetically useful transformations to optiꢀ
cally active 1,3ꢀamino alcohols on a gram scale were
demonstrated.
(11) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.
(12) We investigated chiral BINSAꢀcatalyses in our previous reports
(refs. 2d–f). However, no leaching effect was observed. See the SI.
(13) Hagiya, K.; Muramoto, N.; Misaki, T.; Sugimura, T. Tetrahe-
dron 2009, 65, 6109.
(14) Müller, A.; Höfner, G.; RenukappaꢀGutke, T.; Parsons, C. G.;
Wanner, K. T. Bioorg. Med. Chem. Lett. 2011, 21, 5795.
(15) (a) BräunerꢀOsborne, H.; Egebjerg, J.; Nielsen, E. Ø., Madsen,
U.; KrogsgaardꢀLarsen, P. J. Med. Chem. 2000, 43, 2609. (b) Stawski,
P.; Janovjak, H.; Trauner, D. Bioorg. Med. Chem. 2010, 18, 7759.
(16) Konishi, H.; Nagase, H.; Manabe, K. Chem. Commun. 2015, 51, 1854.
ASSOCIATED CONTENT
Experimental procedures and characterization data. This
material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
*Eꢀmail: ishihara@cc.nagoyaꢀu.ac.jp
ACS Paragon Plus Environment