Hongbin Sun et al.
FULL PAPERS
Cushman, J. Med. Chem. 2001, 44, 4092–4113; c) M. A.
Silvestri, M. Nagarajam, E. De Clercq, C. Pannecou-
que, M. Cushman, J. Med. Chem. 2004, 47, 3149–3162;
d) T. Kamei, K. Itami, J. Yoshida, Adv. Synth. Catal.
2004, 346, 1824–1835, and references cited therein.
[3] Recent reports, see: a) T. Ohe, S. Uemura, Tetrahedron
Lett. 2002, 43, 1269–1271; b) G. Sabitha, E. V. Reddy,
C. Maruthi, J. S. Yadav, Tetrahedron Lett. 2002, 43,
1573–1575; c) N. R. Swamy, Y. Venkateswarlu, Tetrahe-
dron Lett. 2002, 43, 7549–7552; d) T. Ollevier, G.
Lavie-Compin, Tetrahedron Lett. 2002, 43, 7891–7893;
e) S. Repichet, C. Le Roux, N. Roques, J. Dubac, Tetra-
hedron Lett. 2003, 44, 2037–2040; f) G. Sabitha, E. V.
Reddy, R. Swapna, N. M. Reddy, J. S. Yadav, Synlett
2004, 1276–1278; g) S. K. De, R. A. Gibbs, Tetrahedron
Lett. 2004, 45, 7407–7408; h) J. A. R. Salvador, S. M.
Silvestre, Tetrahedron Lett. 2005, 46, 2581–2584;
i) S. K. De, R. A. Gibbs Tetrahedron Lett. 2005, 46,
8345–8350.
Experimental Section
General Methods
1H and 13C NMR spectra were recorded on a JEOL JNM-
ECA 300 spectrometer at 300 MHz and 75 MHz, respective-
ly. The chemical shifts (d) were referenced to TMS or inter-
nal solvent resonance. GC-MS was obtained on a Hewlett
Packard Series II 5890 GC/MS spectrometer. High-resolu-
tion mass spectra were obtained with a ZAB-HS mass spec-
trometer in the Department of Chemistry of Beijing Univer-
sity. GC analyses were performed on an Agilent Technolo-
gies 1790 GC instrument. All reactions were carried out
under air. Solvents and all reagents were used as received.
Typical Procedure for the Synthesis of 1,1-
Diarylalkenes from the Reaction of Arenes with Acyl
Chlorides: Formation of 3a (Table 1, entry1)
A mixture of mesitylene (1a) (480.0 mg, 4.0 mmol), cyclo-
hexanecarbonyl chloride (2a) (293.0 mg, 2.0 mmol) and
BiCl3 (63.0 mg, 0.2 mmol) was heated with stirring at 1208C
for 16 h. After cooling to room temperature, cyclohexane
(15 mL) was added and the insoluble materials were filtered
out. Removal of the solvent and volatiles under reduced
pressure afforded a viscous residue, which was dissolved in
CH2Cl2 (3.0 mL), and the resulting solution was subjected to
preparative TLC (silica) separation using a mixture of dieth-
yl ether and cyclohexane (2:100 v/v) to afford 3a as a white
solid; yield: 269.0 mg (0.84 mmol, 42.0%). Recrystallization
of 3a from hot ethanol gave crystals suitable for X-ray dif-
fraction analysis.
[4] a) El M. Keramane, B. Boyer, J. P. Roque, Tetrahedron
2001, 57, 1917–1921; b) J. N. Arnold, P. D. Hayes, R. L.
Kohaus, R. S. Mohan, Tetrahedron Lett. 2003, 44, 9173–
9175; c) P. A. Evans, J. Cui, S. J. Gharpure, R. J. Hinkle,
J. Am. Chem. Soc. 2003, 125, 11456–11457.
[5] Recent reports, see: a) M. D. Carrigan, D. Sarapa, R. C.
Smith, L. C. Wieland, R. S. Mohan, J. Org. Chem. 2002,
67, 1027–1030; b) N. M. Leonard, M. C. Oswald, D. A.
Freiberg, B. A. Nattier, R. C. Smith, R. S. Mohan, J.
Org. Chem. 2002, 67, 5202–5207; c) L. C Wieland,
H. M. Zerth, R. S. Mohan, Tetrahedron Lett. 2002, 43,
4597–4600; d) J. R. Stephens, P. L. Butler, C. H. Clow,
M. C. Oswald, R. C. Smith, R. S. Mohan, Eur. J. Org.
Chem. 2003, 3827–3831; e) J. S. Yadav, B. V. S. Reddy,
T. Swamy, Tetrahedron Lett. 2003, 44, 4861–4864;
f) J. S. Yadav, B. V. S. Reddy, G. Satheesh, Tetrahedron
Lett. 2003, 44, 6501–6504; g) A. V. Reddy, K. Ravinder,
T. V. Goud, P. Krishnaiah, T. V. Raju, Y. Venkateswar-
lu, Tetrahedron Lett. 2003, 44, 6257–6260; h) T. Ollevi-
er, T. Ba, Tetrahedron Lett. 2003, 44, 9003–9005; i) J. S.
Yadav, B. V. S. Reddy, T. Swamy, Tetrahedron Lett.
2003, 44, 9121–9124; j) T. Ollevier, V. Desyroy, M.
Asim, M.-C. Brochu, Synlett 2004, 2794–2796; k) T. Ol-
levier, G. Lavie-Compin, Tetrahedron Lett. 2004, 45,
49–52; l) H. Gaspard-Iloughmane, C. Le Roux, Eur. J.
Org. Chem. 2004, 2517–2532; m) T. Ollevier, E.
Nadeau, J. Org. chem. 2004, 69, 9292–9295; n) J. S.
Yadav, B. V. S. Reddy, G. Parimala, A. K. Raju, Tetra-
hedron Lett. 2004, 45, 1543–1546; o) M. P. Nguyen,
J. N. Arnold, K. E. Peterson, R. S. Mohan, Tetrahedron
Lett. 2004, 45, 9369–9371; p) J. S. Yadav, B. V. S.
Reddy, T. Swamy, K. R. Rao, Tetrahedron Lett. 2004,
45, 6037–6039; q) T. Ollevier, V. Desyroy, B. Debail-
leul, S. Vaur, Eur. J. Org. Chem. 2005, 4971–4973;
r) E. D. Anderson, J. J. Ernat, M. P. Nguyen, A. C.
Palma, R. S. Mohan, Tetrahedron Lett. 2005, 46, 7747–
7750; s) P. W. Anzalone, A. R. Baru, E. M. Danielson,
P. D. Hayes, M. P. Nguyen, A. F. Panico, R. C. Smith,
R. S. Mohan, J. Org. Chem. 2005, 70, 2091–2096; t) Y.
Bonvin, E. Callens, I. Larrosa, D. A. Henderson, J.
Oldham, A. J. Burton, A. G. M. Barrett, Org. Lett.
2005, 7, 4549–4552.
Typical Procedure for Friedel–Crafts-Type
Vinylation: Reaction of 1a with 4a Affording 3a
(Table 2, entry 1)
A mixture of vinyl chloride (4a, 248.0 mg, 1.0 mmol), 1a
(480.0 mg, 4.0 mmol) and BiCl3 (32.0 mg, 0.1 mmol) was
heated with stirring at 1208C for 16 h. After treatment as
described above, 3a was obtained in 62% yield.
Characterization data of 3a–r and 4a–d are given in the
Supporting Information.
Acknowledgements
Project (20573061) was supported by National Natural Sci-
ence Foundation of China.
References
[1] a) M. Fischer; P. Wan, J. Am. Chem. Soc. 1999, 121,
4555–4562; b) K. Itami, K. Tonogaki, Y. Ohashi, J.
Yoshida, Org. Lett. 2004, 6, 4093–4096; c) K. Itami, Y.
Ohashi, J. Yoshida, J. Org. Chem. 2005, 70, 2778–2792.
[2] a) A. Casimiro-Garcia, M. Micklatcher, J. A. Turpin,
T. L. Stup, K. Watson, R. W. Buckheit, M. Cushman, J.
Med. Chem. 1999, 42, 4861–4874; b) G. Xu, M. Mick-
latcher, M. A. Silvestri, T. L. Hartman, J. Burrier, M. C.
Osterling, H. Wargo, J. A. Turpin, R. W. Buckheit, M.
1924
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2006, 348, 1919 – 1925