Y.-L. Guo et al. / Spectrochimica Acta Part A 67 (2007) 624–627
627
Table 4
IR spectrum, the lanthanide ions were coordinated to the C O
oxygen atoms and C–O–C oxygen atoms. The europium com-
plex exhibited characteristic fluorescence of europium ion. The
different solvents may affect the fluorescence of europium ions.
The lowest triplet state energy level of the ligand indicates that
the triplet state energy level of the ligand matches better to
the resonance level of Eu(III) than Tb(III) ion. Based on those
results, a series of new ligands could be designed and synthe-
sized to optimize the luminescent properties of these lanthanide
ions.
Fluorescence data for the europium complex
Complex
Solvent
λex (nm)
λem (nm)
RFI
967
Assignment
7
Eu(pic)3L
Solid state
451
592
616
5D0 → F1
7
7524
5D0 → F2
7
CHCl3
461
461
461
461
–
592
615
781
5596
5D0 → F1
7
5D0 → F2
7
AcOEt
592
615
413
2360
5D0 → F1
7
5D0 → F2
7
Acetone
Acetonitrile
DMF
592
615
240
1537
5D0 → F1
7
5D0 → F2
Acknowledgements
7
592
615
131
611
5D0 → F1
7
5D0 → F2
We are grateful to the NSFC (Grants 20371022, 20431010
and 20021001), the Specialized Research Fund for the Doctoral
Program of Higher Education (200307300015), and the Key
Project of the Ministry of Education of China (Grant 01170)
for financial support.
–
–
–
plex in this solvent, and in the other four solvents, the complex
has the similar excitation and emission wavelengths.
In CHCl3 solution the Eu complex has the strongest lumi-
nescence, and then in ethyl acetate, acetone, acetonitrile. This
is due to the coordinating effects of solvents, namely solvate
effect [21]. Together with the raising coordination abilities of
CHCl3, ethyl acetate, acetone, acetonitrile for the lanthanide
ions, the oscillatory motions of the entering molecules consume
more energy which the ligand triplet level transfer to the emit-
ting level of the lanthanide ion. Thus, the energy transfer could
not be carried out perfectly.
References
[1] N. Sabbatini, M. Guardigli, J.-M. Lehn, Coord. Chem. Rev. 123 (1993)
201.
[2] S.T. Frey, M.L. Gong, W. de, W Horrocks, Inorg. Chem. 33 (1994)
3229.
[3] N. Sato, S. Shinkai, J. Chem. Soc., Perkin Trans. 2 (1993) 621.
[4] C. Piguet, A.F. Williams, G. Bernardinelli, J.-C.G. Bu¨nzli, Inorg. Chem.
32 (1993) 4139.
[5] F.S. Richardson, Chem. Rev. 82 (1982) 541.
Compared with the Eu3+ complex, the characteristic fluo-
rescence of the Tb3+ was not determined, either in solid state
or in solutions for the Tb3+ complex. The reason is probably
that the energy gap between the triplet state levels of the lig-
and and the lowest resonance level of the europium favor to
the energy transfer process for europium. In order to acquire
the triplet excited state T1 of the ligand L, the phosphorescence
spectra of the Gd(III) picrate complex was measured at 77 K
in a chloroform–methanol–ethanol mixture (v:v:v, 1:5:5). The
triplet state energy levels T1 of the ligand L, which was calcu-
lated from the shortest wavelength phosphorescence band [22]
of the corresponding Gd(III) complexes, is 21,459 cm−1. This
[6] J.-C.G. Bu¨nzli, in: J.-C.G. Bu¨nzli, G.R. Choppin (Eds.), Lanthanide Probes
in Life, Chemical and Earth Sciences, Elsevier, Amsterdam, 1989 (Chapter
7).
[7] B.S. Panigrahi, Spectrochim. Acta A 56 (2000) 1337.
[8] C. Piguet, J.-C.G. Bu¨nzli, G. Bernardinelli, G. Hopfgartner, S. Petoud, O.
Schaad, J. Am. Chem. Soc. 118 (1996) 6681.
[9] G.F. Desa´, O.L. Malta, C. de Mello Donega´, A.M. Simas, R.L. Longo, P.A.
Santa-cruz, E.F. da Silva Jr., Chem. Rev. 196 (2000) 165.
[10] C. Bazzicalupi, A. Bencini, A. Bianchi, C. Giorgi, V. Fusi, A.
Masotti, B. Valtancoli, A. Roque, F. Pina, Chem. Commun. 7 (2000)
561.
[11] Y.-H. Wen, Z. Qin, W.-S. Liu, J. Radioanal. Nucl. Chem. 250 (2001)
285.
[12] Y.-Z. Ding, J.-Z. Lu, Y.-S. Yang, Hua Xue Shi Ji 8 (1986) 201.
[13] W. Yang, X.L. Teng, M. Chem, Talanta 46 (1998) 527.
[14] Y.C. Tian, Y.Q. Liang, J.Z. Ni, Chem. J. Chin. Univ. 9 (1988) 113.
[15] L.-Y. Fan, W.-S. Liu, X.-M. Gan, N. Tang, M.-Y. Tan, W.-H. Jiang, K.-B.
Yu, Polyhedron 19 (2000) 779.
5
energy level is above the lowest excited resonance level D0
5
of Eu(III) (17,300 cm−1) and D4 (20,500 cm−1) of Tb(III).
Thus the absorbed energy could be transferred from ligand to
the Eu or Tb ions. The triplet state energy level T1 of this lig-
and L matches better to the lowest resonance level of Eu(III)
such small ꢁν(T1–5D4) could result in a back-energy transfer
[16] W.J. Gear, Coord. Chem. Rev. 7 (1971) 81.
[17] S.X. Liu, W.S. Liu, M.Y. Tan, K.B. Yu, J. Coord. Chem. 10 (1996) 391.
[18] (a) C.K. Jorgensen, Prog. Inorg. Chem. 4 (1962) 73;
(b) S.P. Sinha, Spectrochim. Acta 22 (1966) 57;
(c) D.E. Henrie, G.R. Choppin, J. Chem. Phys. 49 (1968) 477.
[19] A.K. Solanki, A.M. Bhandaka, J. Inorg. Nucl. Chem. 41 (1979)
1311.
5
process from the excited resonance level D4 of Tb(III) to the
triplet state energy level T1 of this ligand L and quench the
luminescence of the Tb picrate complex [23].
[20] M. Albin, R.R. Wright Jr., W.D. Horrocks, Inorg. Chem. 24 (1985)
2491.
[21] H.Q. Liu, T.C. Cheung, C.M. Che, Chem. Commun. (1996) 1039.
[22] W. Dawson, J. Kropp, M. Windsor, J. Chem. Phys. 45 (1966) 2410.
[23] F. Gutierrez, C. Tedeschi, L. Maron, J.-P. Daudey, R. Poteau, J. Azema, P.
Tisnes, C. Picard, J. Chem. Soc., Dalton Trans. (2004) 1334.
4. Conclusion
According to the data and discussion above, the new lig-
and can form stable complexes with lanthanide picrate. From